

Similarity Search
The Metric Space Approach

ADVANCES IN DATABASE SYSTEMS

Series Editor
Ahmed K. Elmagarmid

Purdue University
West Lafayette, IN 47907

Other books in the Series:
STREAM DATA MANAGEMENT, Nauman Chaudhry, Kevin Shaw, Mahdi

Abdelguerfi, ISBN: 0-387-24393-3
FUZZY DATABASE MODELING WITH XML, Zongmin Ma, ISBN: 0 387

24248-1
MINING SEQUENTIAL PATTERNS FROM LARGE DATA SETS, Wei Wang

andJiong Yang; ISBN: 0-387-24246-5
ADVANCED SIGNATURE INDEXING FOR MULTIMEDIA AND WEB

APPLICATIONS, Yannis Manolopoulos, Alexandras Nanopoulos, Eleni
Tousidou; ISBN: 1-4020-7425-5

ADVANCES IN DIGITAL GOVERNMENT, Technology, Human Factors, and
Policy, edited by William J. Mclver, Jr. and Ahmed K. Elmagarmid; ISBN: 1-
4020-7067-5

INFORMATION AND DATABASE QUALITY, Mario Piattini, Coral Calero and
Marcela Genero; ISBN: 0-7923- 7599-8

DATA QUALITY, Richard Y. Wang, Mostapha Ziad, Yang W. Lee: ISBN: 0-7923-
7215-8

THE FRACTAL STRUCTURE OF DATA REFERENCE: Applications to the
Memory Hierarchy, Bruce McNutt; ISBN: 0-7923-7945-4

SEMANTIC MODELS FOR MULTIMEDIA DATABASE SEARCHING AND
BROWSING, Shu-Ching Chen, R.L Kashyap, andArifGhafoor, ISBN: 0-7923-
7888-1

INFORMATION BROKERING ACROSS HETEROGENEOUS DIGITAL DATA:
A Metadata-based Approach, Vipul Kashyap, AmitSheth', ISBN: 0-7923-7883-0

DATA DISSEMINATION IN WIRELESS COMPUTING ENVIRONMENTS,
Kian-Lee Tan and Beng Chin Ooi\ ISBN: 0-7923-7866-0

MIDDLEWARE NETWORKS: Concept, Design and Deployment of Internet
Infrastructure, Michah Lerner, George Vanecek, Nino Vidovic, Dad Vrsalovic;
ISBN: 0-7923-7840-7

ADVANCED DATABASE INDEXING, Yannis Manolopoulos, Yannis Theodoridis,
VassilisJ. Tsotras; ISBN: 0-7923-7716-8

MULTILEVEL SECURE TRANSACTION PROCESSING, Vijay Atluri, Sushil
Jajodia, Binto George ISBN: 0-7923-7702-8

FUZZY LOGIC IN DATA MODELING, Guoqing Chen ISBN: 0-7923-8253-6
INTERCONNECTING HETEROGENEOUS INFORMATION SYSTEMS, A//zman

Bouguettaya, Boualem Benatallah, Ahmed Elmagarmid ISBN: 0-7923-8216-1

For a complete listing of books in this series, go to http://www.springeronline.com

http://www.springeronline.com

Similarity Search
The Metric Space Approach

Pavel Zezula
Masaryk University, Czech Republic

Giuseppe Amato
ISTI-CNR, Italy

Vlastislav Dohnal
Masaryk University, Czech Republic

Michal Batko
Masaryk University, Czech Republic

Springer

Pavel Zezula
Masaryk University, Czech Republic

Giuseppe Amato
ISTI-CNR, Italy

Vlastislav Dohnal
Masaryk University, Czech Republic

Michal Batko

Masaryk University, Czech Republic

Library of Congress Control Number: 2005933400

ISBN-10: 0-387-29146-6 e-ISBN-10: 0-387-29151-2
ISBN-13: 978-0387-29146-8 e-ISBN-13: 978-0387-29151-2
© 2006 by Springer Science+Business Media, Inc.
All rights reserved. This work may not be translated or copied in whole or in part
without the written permission of the publisher (Springer Science + Business
Media, Inc., 233 Spring Street, New York, NY 10013, USA), except for brief
excerpts in connection with reviews or scholarly analysis. Use in connection with
any form of information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter
developed is forbidden.
The use in this publication of trade names, trademarks, service marks and similar
terms, even if they are not identified as such, is not to be taken as an expression
of opinion as to whether or not they are subject to proprietary rights.

Printed in the United States of America

9 8 7 6 5 4 3 2 1 SPIN 11552659
e-SPIN 11560609

springeronline.com

http://springeronline.com

This book is dedicated to the
10th anniversary of the
Faculty of Informatics,

Masaryk University in Brno

Contents

Dedication v
Foreword xiii
Preface xv
Acknowledgments xvii

Part I Metric Searching in a Nutshell

Overview 3

1. FOUNDATIONS OF METRIC SPACE SEARCHING 5

6
8
9
10
11
12
13
13
14
14
15
15
16
17
17
18
18

1 The Distance Searching Problem
2 The Metric Space

3 Distance Measures
3.1
3.2
3.3
3.4
3.5
3.6
3.7

Minkowski Distances
Quadratic Form Distance
Edit Distance
Tree Edit Distance
Jaccard's Coefficient
Hausdorff Distance
Time Complexity

4 Similarity Queries
4.1
4.2
4.3
4.4
4.5
4.6

Range Query
Nearest Neighbor Query
Reverse Nearest Neighbor Query
Similarity Join
Combinations of Queries
Complex Similarity Queries

viii SIMILARITY SEARCH

5 Basic Partitioning Principles 20
5.1 Ball Partitioning 20
5.2 Generalized Hyperplane Partitioning 21
5.3 Excluded Middle Partitioning 21
5.4 Extensions 21

6 Principles of Similarity Query Execution 22
6.1 Basic Strategies 22
6.2 Incremental Similarity Search 25

7 Policies for Avoiding Distance Computations 26
7.1 Explanatory Example 27
7.2 Object-Pivot Distance Constraint 28
7.3 Range-Pivot Distance Constraint 30
7.4 Pivot-Pivot Distance Constraint 31
7.5 Double-Pivot Distance Constraint 33
7.6 Pivot Filtering 34

8 Metric Space Transformations 35
8.1 Metric Hierarchies 3 6
8.1.1 Lower-Bounding Functions 36
8.2 User-Defined Metric Functions 38
8.2.1 Searching Using Lower-Bounding Functions 38
8.3 Embedding Metric Space 39
8.3.1 Embedding Examples 39
8.3.2 Reducing Dimensionality 40

9 Approximate Similarity Search 41
9.1 Principles 41
9.2 Generic Algorithms 44
9.3 Measures of Performance 46
9.3.1 Improvement in Efficiency 46
9.3.2 Precision and Recall 46
9.3.3 Relative Error on Distances 48
9.3.4 Position Error 49

10 Advanced Issues 50
10.1 Statistics on Metric Datasets 51
10.1.1 Distribution and Density Functions 51
10.1.2 Distance Distribution and Density 52
10.1.3 Homogeneity of Viewpoints 54
10.2 Proximity of Ball Regions 55
10.3 Performance Prediction 58

Contents

10.4 Tree Quality Measures
10.5 Choosing Reference Points

2. SURVEY OF EXISTING APPROACHES

1

2

3

4

Ball Partitioning Methods
1.1 Burkhard-Keller Tree
1.2 Fixed Queries Tree
1.3 Fixed Queries Array
1.4 Vantage Point Tree
1.4.1 Multi-Way Vantage Point Tree
1.5 Excluded Middle Vantage Point Forest

Generalized Hyperplane Partitioning Approaches
2.1 Bisector Tree
2.2 Generalized Hyperplane Tree

Exploiting Pre-Computed Distances
3.1 AESA
3.2 Linear AESA
3.3 Other Methods

Hybrid Indexing Approaches
4.1 Multi Vantage Point Tree
4.2 Geometric Near-neighbor Access Tree
4.3 Spatial Approximation Tree
4.4 M-tree

ix

60
63

67

67
68
69
70
72
74
75

76
76
77

78
78
79
80

81
81
82
85
87

4.5 Similarity Hashing 88

5 Approximate Similarity Search 89
5.1 Exploiting Space Transformations 89
5.2 Approximate Nearest Neighbors with BBD Trees 90
5.3 Angle Property Technique 92
5.4 Clustering for Indexing 94
5.5 Vector Quantization Index 95
5.6 Buoy Indexing 97
5.7 Hierarchical Decomposition of Metric Spaces 97
5.7.1 Relative Error Approximation 98
5.7.2 Good Fraction Approximation 98
5.7.3 Small Chance Improvement Approximation 98
5.7.4 Proximity-Based Approximation 99
5.7.5 PAC Nearest Neighbor Search 99

X SIMILARITY SEARCH

Part II Metric Searching in Large Collections of Data

Overview 103

CE
1

2

3

iNTRALIZED INDEX STRUCTURES

M-tree Family
1.1 The M-tree
1.2 Bulk-Loading Algorithm of M-tree
1.3 Multi-Way Insertion Algorithm
1.4 The Slim Tree
1.4.1 Slim-Down Algorithm
1.4.2 Generalized Slim-Down Algorithm
1.5 Pivoting M-tree
1.6 The M+-tree
1.7 The M^-tree

Hash-based metric indexing
2.1 TheD-index
2.1.1 Insertion and Search Strategies
2.2 The eD-index
2.2.1 Similarity Self-Join Algorithm with eD-index

Performance Trials
3.1 Datasets and Distance Measures
3.2 Performance Comparison
3.3 Different Query Types
3.4 Scalability

APPROXIMATE SIMILARITY SEARCH

1

2

3

4

5

6

Relative Error Approximation

Good Fraction Approximation

Small Chance Improvement Approximation

Proximity-Based Approximation

PAC Nearest Neighbor Searching

Performance Trials
6.1 Range Queries
6.2 Nearest Neighbors Queries
6.3 Global Considerations

105

105
105
109
112
113
114
116
118
121
124

125
126
129
131
133

136
137
138
140
141

145

145

148

150

152

153

154
155
156
159

Contents xi

5. PARALLEL AND DISTRIBUTED INDEXES 161

1 Preliminaries 161
1.1 Parallel Computing 162
1.2 Distributed Computing 163
1.2.1 Scalable and Distributed Data Structures 163
1.2.2 Peer-to-Peer Data Networks 164

2 Processing M-trees with Parallel Resources 164
2.1 CPU Parallelism 165
2.2 I/O Parallelism 165
2.3 Object Declustering in M-trees 167

3 Scalable Distributed Similarity Search Structure 167
3.1 Architecture 168
3.2 Address Search Tree 169
3.3 Storage Management 169
3.3.1 Bucket Splitting 170
3.3.2 Choosing Pivots 171
3.4 Insertion of Objects 171
3.5 Range Search 172
3.6 Nearest Neighbor Search 173
3.7 Deletions and Updates of Objects 174
3.8 Image Adjustment 175
3.9 Logarithmic Replication Strategy 177
3.10 Joining the Peer-to-Peer Network 178
3.11 Leaving the Peer-to-Peer Network 178

4 Performance Trials 179
4.1 Datasets and Computing Infrastructure 180
4.2 Performance of Similarity Queries 180
4.2.1 Global Costs 181
4.2.2 Parallel Costs 183
4.2.3 Comparison of Search Algorithms 188
4.3 Data Volume Scalability 189

Concluding Summary 193

References 197

Author Index 211

Index 215

Abbreviations 219

Foreword

The area of similarity searching is a very hot topic for both research and com-
mercial applications. Current data processing applications use data with con-
siderably less structure and much less precise queries than traditional database
systems. Examples are multimedia data like images or videos that offer query-
by-example search, product catalogs that provide users with preference-based
search, scientific data records from observations or experimental analyses such
as biochemical and medical data, or XML documents that come from heteroge-
neous data sources on the Web or in intranets and thus does not exhibit a global
schema. Such data can neither be ordered in a canonical manner nor meaning-
fully searched by precise database queries that would return exact matches.

This novel situation is what has given rise to similarity searching, also re-
ferred to as content-based or similarity retrieval. The most general approach
to similarity search, still allowing construction of index structures, is modeled
in metric space. In this book. Prof. Zezula and his co-authors provide the first
monograph on this topic, describing its theoretical background as well as the
practical search tools of this innovative technology.

In Part I, the authors describe ideas and principles, as well as generic par-
titioning, search and transformation strategies which have been developed for
similarity search in metric spaces. Their use is illustrated in an extensive survey
of available indexes. Part II concentrates on similarity search techniques for
large collections of data. In particular, it starts with the pioneering work on the
M-tree, developed by Prof. Zezula as one of the authors, and continues with
the description of hash-based techniques for similarity searching, which formed
the main topic of Dr. Dohnal's PhD dissertation. The approximate similarity
search, representing another important chapter of this book, was mainly devel-
oped in the PhD dissertation of Dr. Amato. The final chapter on scalable and
distributed index structures for similarity searching reports the latest efforts of
the PhD candidate Dr. Batko. All these PhD dissertations have been supervised
by Prof. Zezula.

xiv SIMILARITY SEARCH

This monograph is a very valuable resource for scientists who are working or
want to work on the many aspects of similarity search. The authors are not only
leading experts in this field, but also pedagogically first-rate scholars. Their
explanations nicely combine mathematical rigor with intuitive examples and
illustration. I believe this book will be a great asset for students and researchers
alike.

Prof. Gerhard Weikum
Max-Planck Institute of Computer Science
Saarbruecken, Germany

Preface

In the Information Society, information holds the master key to economic
influence and success. But the usefulness of information depends critically upon
its quality and the speed at which it can be transferred. In domains as diverse
as multimedia, molecular biology, computer-aided design and marketing and
purchasing assistance, the number of data resources is growing rapidly, both
with regard to database size and the variety of forms in which data comes
packaged. To cope with the resulting information overkill, it is vital to find
tools to search these resources efficiently and effectively. Hence the intense
interest in Computer Science in searching digital data repositories.

But traditional retrieval techniques, typically based upon sorting routines and
hash tables, are not appropriate for a growing number of newly-emerging data
domains. More flexible methods must be found instead which take into account
the needs of particular users and particular application domains.

This book is about finding efficient ways to locate user-relevant information
in collections of objects which have been quantified using a pairwise distance
measure between object instances. It is written in direct response to recent
advances in computing, communication and storage which have led to the cur-
rent flood of digital libraries, data warehouses and the limitless heterogeneity
of Internet resources. The scale of the problem can be gauged by noting that
almost everything we see, hear, read, write or measure will soon be avail-
able to computerized information systems. In such an environment, varied
data modalities such as multimedia objects, scientific observations and mea-
surements, statistical analyses and many others, are massively extending more
traditional attribute-like data types.

Ordinary retrieval techniques are inadequate in many of these newer data
domains because sorting is simply impossible. To illustrate, consider a col-
lection of bit patterns compared using the Hamming distance, i.e., the number
of bits by which a given pair of patterns differs. There is no way to sort the
patterns linearly so that, selecting any arbitrary member, the other objects can

xvi SIMILARITY SEARCH

be ordered in terms of steadily increasing Hamming distance. The same ap-
plies to the spectrum of colors. Obviously, we can sort colors according to their
similarity with respect to a specific hue, for example pink. But we can't sort
the set of all colors in such a way that, for each hue, its immediate neighbor is
the hue most similar to it.

This is what has given rise to a novel indexing paradigm based upon distance.
From a formal standpoint, the search problem is modelled in metric space.
The collection of objects to be searched forms a subset of the metric space
domain, and the distance measure applied to pairs of objects is a metric distance
function. This approach significantly extends the scope of traditional search
approaches and supports execution of similarity queries. By considering exact,
partial, and range queries as special cases, the distance search approach is highly
extensible. In the last ten years, its attractiveness has prompted major research
efforts, resulting in a number of specific theories, techniques, implementation
paradigms and analytic tools aimed at making the distance-based approach
viable.

This book focuses on the state of the art in developing index structures for
searching metric space. It consists of two parts. Part I presents the metric
search approach in a nutshell. It defines the problem, describes major theoret-
ical principles, and provides an extensive survey of specific techniques for a
large range of applications. This part is self-contained and does not require any
specific prerequisites. Part II concentrates on approaches particularly designed
for searching in large collections of data. After describing the most popular
centralized disk-based metric indexes, approximation techniques are presented
as a way to significantly speed up search time at the expense of some impre-
cision in query results. The final chapter of the book concentrates on scalable
and distributed metric structures, which can deal with data collections that for
practical purposes are arbitrarily large, provided sufficient computational power
is available in the computer network. In order to properly understand Part II,
we recommend at a minimum reading Chapter 1 of Part I.

PAVEL ZEZULA, GIUSEPPE AMATO,

VLASTISLAV DOHNAL, AND MICHAL BATKO

Acknowledgments

We wish to acknowledge all the people who have helped us directly or indi-
rectly in completing this book. First of all, we would like to thank Paolo Ciaccia
and Marco Patella for their enthusiastic cooperation and important contribution
to the development of metric search techniques. We would also like to mention
our other collaborators, mainly Fausto Rabitti, Paolo Tiberio, Claudio Gennaro,
and Pasquale Savino, who encouraged us to finish the preparation of this book.
We are grateful to Melissa Fearon and Valerie Schofield from Springer for their
technical support during the preparation phase. And we are indebted to Mark
Alexander for his comments, suggestions, and modifications concerning lan-
guage and style. Many technical details have been corrected due to observations
by Matej Lexa, David Novak, Petr Liska and Fabrizio Falchi who have read a
preliminary version of the book. We would also like to acknowledge the sup-
port of the EU Network of Excellence DELOS - No. 507618, which made this
international publication possible by underwriting travel expenses, and which
has served as an excellent forum for discussing the book's subject matter. The
work was also partially supported by the National Research Program of the
Czech Republic Project number 1ET100300419.

PARTI

METRIC SEARCHING IN A NUTSHELL

Overview

As the growth of digital data accelerates in variety and extent, huge data
repositories are becoming available on computer networks. For users to be able
to access selected data objects, the objects need to be structured and manipulated
efficiently but also effectively.

In contrast to traditional databases made up of simple attribute data, contem-
porary data is bulkier and more complex in nature. To deal with the increased
bulk, data reduction techniques are employed as in [Barbara et al., 1997].
These approaches typically result in high-dimensional vectors or other objects
for which nothing beyond pairwise distances can be measured. Such data are
sometimes designated distance-only data. A similar situation can occur with
multimedia data. Here, the standard approach is to search not at the level of
the actual multimedia objects, but rather using characteristic features extracted
from these objects. In such environments, an exact match has little meaning, and
proximity concepts {similarity, dissimilarity) are typically much more fruitful
for searching.

Proximity searching has become a fundamental computational task in a va-
riety of application areas, including multimedia information retrieval, data
mining, pattern recognition, machine learning, computer vision, biomedical
databases, data compression and statistical data analysis. It was originally stud-
ied mostly within computational geometry, but has recently attracted increasing
attention in the database community, because of the growing need for dealing
with a large, often distributed, volume of data. As a consequence, performance
has become an important criterion for a successful design. It is well-known that
performance is a noteworthy constraint on software systems, and a lack of it is
the leading cause for failure. In applications such as data warehousing, with
huge repositories of heterogeneous data, it's easy to see how important search
speed is and how difficult it can be to achieve the necessary response time. Other
good examples of data intensive applications are data mining and multimedia

4 SIMILARITY SEARCH

content-based retrieval, where the amount of data processed is usually counted
in terabytes or more.

The primary objective of doing a similarity search in metric space is not
terribly different from that in other kinds of searching. In each case the task is
to retrieve subsets from available data collections. But there are many aspects
of similarity searching in metric spaces which make it distinct. In order to
systematically explain the principles which have led to the development of
numerous specific proposals, we first explain in Chapter 1 how distances can
be used to formalize the problem of proximity and how metric space postulates
can be applied to data partitioning and pruning for different search methods.
Chapter 2 is devoted to a structured survey of existing indexing techniques
designed especially for metric data storage and retrieval.

Chapter 1

FOUNDATIONS OF METRIC SPACE SEARCHING

The search problem is constrained in general by the type of data stored in
the underlying database, the method of comparing individual data instances,
and the specification of the query by which users express their information
needs. Treating data collections as metric objects brings a great advantage
in generality, because many data classes and information-seeking strategies
conform to the metric view. Accordingly, a single metric indexing technique
can be applied to many specific search problems quite different in nature. In this
way, the important extensibility property of indexing structures is automatically
satisfied. An indexing scheme that allows various forms of queries, or which
can be modified to provide additional functionality, is of more value than an
indexing scheme otherwise equivalent in power or even better in certain respects,
but which cannot be extended.

Because of the solid mathematical foundations underlying the notion of met-
ric space, straightforward but precise partitioning and pruning rules can be
constructed. This is very important for developing index structures, especially
in cases where query execution costs are not only I/O-bound but also CPU-
bound. In this chapter, we put clear constraints on the scope and capability of
metric searching and define principles which are used to construct correspond-
ing search indexes.

In Section 1, we introduce the problem of metric searching and justify its
importance with respect to other approaches. After defining a metric space in
Section 2, we show examples of several distance measures which are used for
searching in diverse data collections in Section 3. Another issue closely related
to distance measures is the problem of posing queries presented in Section 4.
A specification of basic partitioning principles in Section 5 helps to understand
principles of query execution in Section 6. The remaining sections in Chap-
ter 1 are devoted to performance related issues. Specifically, techniques aimed

6 SIMILARITY SEARCH

at reducing the number of distance computations are discussed in Section 7,
useful metric space transformations are presented in Section 8, and concepts of
approximate similarity search are explained in Section 9. Finally, Section 10
provides a collection of analytic tools and approaches especially developed for
metric index structures.

!• The Distance Searching Problem
Searching has always been one of the most prominent data processing op-

erations. However, exact-match retrieval, typical for traditional databases, is
neither feasible nor meaningful for data types in the present digital age. The
reason is that the constantly expanding data of modem digital collections lacks
structure and precision. Because of this, what constitutes a match to a request
is often different from that implied in more traditional, well-established areas.

A very useful, if not necessary, search paradigm is to quantify the proxim-
ity, similarity, or dissimilarity of a query object versus the objects stored in a
database to be searched. Roughly speaking, objects that are near a given query
object form the query response set. A useful abstraction for nearness is pro-
vided by the mathematical notion of metric space [Kelly, 1955]. We consider
the problem of organizing and searching large datasets from the perspective of
generic or arbitrary metric spaces, sometimes conveniently labelled distance
spaces. In general, the search problem can be described as follows:

PROBLEM 1.1 Let V he a domain, d a distance measure on T>, and (P, d) a
metric space. Given a set X C Vofn elements, preprocess or structure the
data so that proximity queries are answered efficiently.

From a practical point of view, X can be seen as a file (a dataset or a collection)
of objects that takes values from the domain V, with d as the proximity measure,
i.e., the distance function defined for an arbitrary pair of objects from V. Though
several types of similarity queries exist and others are expected to appear in
the future, the basic types are known as the similarity range and the nearest
neighbor(s) queries.

In a distance space, the only possible operation on data objects is the com-
putation of a distance function on pairs of objects which satisfies the triangle
inequality. In contrast, objects in a coordinate space - coordinate space being a
special case of metric space - can be seen as vectors. Such spaces satisfy some
additional properties that can be exploited in storage (index) structure designs.
Naturally, the distance between vectors can be computed, but each vector can
also be uniquely located in coordinate space. Further, vector representation
allows us to perform operations like vector addition and subtraction. Thus, new
vectors can be constructed from prior vectors. For more information, see e.g.,
[Gaede and Günther, 1998, Böhm et al., 2001] for surveys of techniques that
exploit the properties of coordinate space.

Foundations of metric space searching 1

Since many data domains in use are represented by vectors, there might seem
to be little point in hunting efficient index structures in pure metric spaces,
where the number of possible geometric properties would seem limited. The
following discussion should clarify the issue and provide sufficient evidence of
the importance of the distance searching problem.

Applications managing non-vector data like character strings (natural lan-
guage words, DNA sequences, etc.) do exist, and their number is growing.
But even when the objects processed are vectors, the properties of the under-
lying coordinate space cannot always be easily exploited. If the individual
vectors are correlated, i.e., there is cross-talk between them, the neighborhood
of the vectors seen through the lens of the distance measure between them will
not map directly to their coordinate space, and vice versa. Distance functions
which allow user-defined weights to be specified better reflect the user's per-
ception of the problem and are therefore preferable. This occurs, for instance,
when searching images using color similarity, where cross-talk between color
components is a factor that must be taken into account.

Existing solutions for searching in coordinate space suffer from the so-called
dimensionality curse - such structures either become slower than naive algo-
rithms with linear search times or they use too much space. Though the structure
of indexed data may be intrinsically much simpler (the data may, e.g., lie in a
lower-dimensional hyperplane), this is typically difficult to ascertain. More-
over, some spaces have coordinates restricted to small sets of possible values
(perhaps even binary), so that the use of such coordinates is not necessarily
helpful.

Depending on the data objects, the distance measure and the dimension-
ality of a given space, we agree that the use of coordinates can be advanta-
geous in special cases, resulting in non-extensible solutions. But we also agree
with [Clarkson, 1997], that

to strip the problem down to its essentials by only considering distances,
it is reasonable to find the minimal properties needed for fast algorithms.

In summary, the primary reasons for looking at the distance data search problem
seriously are the following:

1 There are numerous applications where the proximity criteria offer no spe-
cial properties but distance, so a metric search becomes the sole option.

2 Many specialized solutions for proximity search perform no better than
indexing techniques based on distances. Metric search thus forms a viable
alternative.

3 If a good solution utilizing generic metric space can be found, it will provide
high extensibility. It has the potential to work for a large number of existing
proximity measures, as well as many others to be defined in the future.

8 SIMILARITY SEARCH

2. The Metric Space
A similarity search can be seen as a process of obtaining data objects in

order of their distance or dissimilarity from a given query object. It is a kind of
sorting, ordering, or ranking of objects with respect to the query object, where
the ranking criterion is the distance measure. Though this principle works for
any distance measure, we restrict the possible set of measures by the metric
postulates.

Suppose a metric space M — (T>^ d) defined for a domain of objects (or the
objects' keys or indexed features) V and a total (distance) function d. In this
metric space, the properties of the function d : P x P i-̂ M, sometimes called
the metric space postulates, are typically characterized as:

Mx^ y G P , d{x^ y) >0 non-negativity,

Vx, y ET)^ d(x^ y) = d{y^ x) symmetry,

Vx,y eV^x = y ^ d{x^y) = 0 identity,

Vx, y^z eV^ d(x^ z) < d{x^ y) + d{y^ z) triangle inequality.

For brevity, some authors call the metric fiinction simply the metric. There
are also several variations of metric spaces. In order to specify them more
easily, we first transform the metric space postulates above into an equivalent
form in which the identity postulate is decomposed into (p3) and (p4):

(pi) Vx, y G P , d{x, y) ^ 0 non-negativity,

(p2) Vx, y eV^ d{x^ y) = d{y, x) symmetry,

(p3) Vx G V, d{x, x) = 0 reflexivity,

(p4) Vx,y eV^x y^ y ^ d{x^y) > 0 positiveness,

(p5) Vx, y^z eV^ d{xj z) < d(x, y) + d{y^ z) triangle inequality.

If the distance function does not satisfy the positiveness property (p4), it is
called a pseudo-metric. In this book, we do not consider pseudo-metric func-
tions separately, because such functions can be transformed to the standard
metric by regarding any pair of objects with zero distance as a single object.
Such a transformation is correct: if the triangle inequality (p5) holds, we can
prove that d{x^ y) = 0 ^^z eV^ d{x^ z) = d{y^ z). Specifically, by combin-
ing the triangle inequalities

d{x,z) < d{x,y) + d{y,z)

Foundations of metric space searching 9

and
diy.z) < d{x,y) + d{x,z),

we get d{x^ z) — d{y^ z), if d{x^ y) = 0.
If, on the other hand, the symmetry property (p2) does not hold, we talk about

a quasi-metric. For example, let the objects be different locations within a city,
and the distance function the physical distance a car must travel between them.
The existence of one-way streets implies the function must be asymmetrical.
There are techniques to transform asymmetric distances into symmetric form,
for example:

To round out our list of possible metric distance function variants, we con-
clude this section with a version which satisfies a stronger constraint on the
triangle inequality. It is called the super-metric or the ultra-metric. Such a
function satisfies the following tightened triangle inequality:

Va::, y^z eV^ d{x^ z) < max{(i(x, ?/), d{y^ z)}.

The geometric characterization of the super-metric requires every triangle to
have at least two sides of equal length, i.e., to be isosceles, which implies that
the third side must be shorter than the others. Ultra-metrics are widely used
in the field of biology, particularly in evolutionary biology. By comparing the
DNA sequences of pairs of species, evolutionary biologists obtain an estimate
of the time which has elapsed since the species separated. From these distances,
an evolutionary tree (sometimes called phylogenetic tree) can be reconstructed,
where the weights of the tree edges are determined by the time elapsed between
two speciation events [Pamas and Ron, 2001, Rammal et al., 1986]. Having a
set of extant species, the evolutionary tree forms an ultra-metric tree with all
the species stored in leaves and an identical distance from root to leaves. The
ultra-metric tree is a model of the underlying ultra-metric distance function.

3. Distance Measures
The distance functions of metric spaces represent a way of quantifying the

closeness of objects in a given domain. In the following, we present examples of
distance functions used in practice on various types of data. Distance functions
are often tailored to specific applications or a class of possible applications.
In practice, distance functions are specified by domain experts, however, no
distance function restricts the range of queries that can be asked with this metric.

Depending on the character of values returned, distance measures can be
divided into two groups:

• discrete - distance functions which return only a small (predefined) set of
values, and

10 SIMILARITY SEARCH

Figure LI. The sets of points at a constant distance from the central point for different Lp
distance functions.

• continuous - distance functions in which the cardinality of the set of values
returned is very large or infinite.

An example of a continuous function is the Euclidean distance between vectors,
while the edit distance on strings represents a discrete function. As we will see
in Chapter 2, some metric structures are applicable only in the area of discrete
metric functions. In the following, we mainly survey metric functions used for
complex data types like multidimensional vectors, strings or sets. However,
even domains as simple as the real numbers (V = R) can be seen in terms of
metric data, by defining the distance function as d = \oi — Oj\, that is, as the
absolute value of the difference of any pair of numbers (o ,̂ Oj) from V.

3.1 Minkowski Distances
The Minkowski distance functions form a whole family of metric functions,

designated as the Lp metrics, because the individual cases depend on the nu-
meric parameter p. These functions are defined on n-dimensional vectors of
real numbers as:

Lp[{xi,,,,,xn),{yi,^..,yn)] = fi E Xn

where the Li metric is known as the Manhattan distance (also the City-Block
distance), the L2 distance denotes the well-known Euclidean distance, and the
Loo = n^ax?=i l^i — yi\'^^ called the maximum distance, the infinite distance
or the chessboard distance. Figure 1.1 illustrates some members of the Lp
family, where the shapes denote points of a 2-dimensional vector space that
are at the same distance from the central point. The Lp metrics find use in a
number of cases where numerical vectors have independent coordinates, e.g.,
in measurements of scientific experiments, environmental observations, or the
study of different aspects of the business process.

Foundations of metric space searching 11

3.2 Quadratic Form Distance
Several applications using vector data have individual components, i.e., fea-

ture dimensions, correlated, so a kind of cross-talk exists between individual
dimensions. Consider, for example, color histograms of images, where each
dimension represents a specific color. To compute a distance, the red compo-
nent, for example, must be compared not only with the dimension representing
the red color, but also with the pink and orange, because these colors are sim-
ilar. The Euclidean distance L2 does not reflect any correlation of features of
color histograms. A distance model that has been successfully applied to image
databases in [Faloutsos et al., 1994], and that has the power to model depen-
dencies between different components of features, is provided by the quadratic
form distance functions in [Hafner et al., 1995, Seidl and Kriegel, 1997]. In this
approach, the distance measure of two n-dimensional vectors is based on an
nxn positive semi-definite matrix M — [m^ ̂ J, where the weights ruij denote
how strong the connection between two components i and j of vectors x and
y is, respectively. These weights are usually normalized so that 0 < rriij < 1
with the diagonal elements rrii^i == 1. The following expression represents a
generalized quadratic distance measure dM, where the superscript T denotes
vector transposition:

dui^, y) = Y (^ -yY ' M '{x-y) ,

Observe that this definition of distance also subsumes the Euclidean distance
when the matrix M is equal to the identity matrix. Also the weighted Eu-
clidean distance measure can be expressed using the matrix with non-zero ele-
ments on the diagonal representing weights of the individual dimensions, i.e.,
M — diag{wi^..., Wn). Applying such a matrix, the quadratic form distance
formula turns out to be as follows, yielding the general formula for the weighted
Euclidean distance:

dM{x,y) =

\

"^Wi^Xi-yiY
i=l

As an example, consider simplified color histograms with three different col-
ors (blue, red, orange) represented as 3-D vectors. Assuming three normalized
histograms of a pure red image x = (0,1,0), a pure orange image y — (0,0,1)
and a pure blue image z — (1,0,0), the Euclidean distance evaluates to the
following distances: L2(x, y) = \/2 and L2(x, z) = \/2. This implies that the
orange and the blue images are equidistant from the red. However, human color
perception is quite different and perceives red and orange to be more alike than
red and blue. This can be modeled with the matrix M shown below, yielding a

12 SIMILARITY SEARCH

X, y distance equal to \/Ö^, while the distance x, £ evaluates to \/2.

M =
1.0 0.0 0.0
0.0 1.0 0.9
0.0 0.9 1.0

The quadratic form distance measure may be computationally expensive,
depending upon the dimensionality of the vectors. Color image histograms
are typically high-dimensional vectors consisting of 64 or 256 distinct colors
(vector dimensions).

3.3 Edit Distance
The closeness of sequences of symbols (strings) can be effectively mea-

sured by the edit distance, also called the Levenshtein distance, presented
in [Levenshtein, 1965]. The distance between two strings and
y — 2/1 • • 2/m is defined as the minimum number of atomic edit operations
(insert, delete, and replace) needed to transform string x into string y. The
atomic operations are defined formally as follows:

• insert the character c into the string x at the position i\
ins{x^ 2, c) = xiX2 • • • XiCXi^i • • • x^;

• delete the character at the position i from the string x:
del{x, i) = xia;2 • • • x^-iXi+i -- - Xn',

• replace the character at the position iinx with the new character c:
replace{x^ z, c) = xiX2 • • • Xi-icxi^i • • • Xn-

The generalized edit distance function assigns weights (positive real numbers)
to individual atomic operations. Hence, the distance between strings x and
y is the minimum value of the sum of weighted atomic operations needed to
transform x into y. If the weights of insert and delete operations differ, the
edit distance is not symmetric (violating property (p2) defined in Section 2)
and therefore not a metric function. To see why, consider the following exam-
ple, where the weights of atomic operations are set as wins = 2, Wdei = 1»
"^replace ^ -•-•

deditC'combine^^ ^'combination'') = 9
- replacement e -^ a, insertion of t, i, o, n

dediti^'combination''^ ^'combine") = 5
- replacement a —̂ e, deletion of t, i, o, n

Foundations of metric space searching 13

Within this book, we only assume metric functions, thus the weights of insert
and delete operations must be the same. However, the weight of the replace
operation can differ. Usually, the edit distance is defined with all weights equal
to one. An excellent survey on string matching can be found in [Navarro, 2001].

Using weighting functions, we can define a most generic edit distance which
assigns different costs even to operations on individual characters. For example,
the replacement a ^ b can be assigned a different weight than a -> c. To retain
the metric postulates, some additional limits must be placed on weight functions,
e.g. symmetry of substitutions - the cost of a —> 6 must be the same as the cost
of 6 —> a.

3.4 Tree Edit Distance
The tree edit distance is a well-known proximity measure for trees, exten-

sively studied in [Sankoff and Kruskal, 1983, Apostolico and Galil, 1997], The
tree edit distance function defines a distance between two tree structures as the
minimum cost needed to convert the source tree to the target tree using a prede-
fined set of tree edit operations, such as the insertion or deletion of a node. In
fact, the problem of computing the distance between two trees is a generaliza-
tion of the edit distance to labeled trees. The individual cost of edit operations
(atomic operations) may be constant for the whole tree, or may vary with the
level in the tree at which the operation is carried out. The reason for having
different weights for tree levels is that the insertion of a single node near the
root may be more significant than adding a new leaf node. This will, of course,
depend on the application domain. Several strategies for setting costs and com-
puting the tree edit distance are described in the doctoral thesis by Lee [Lee,
2002]. Since XML documents are typically modeled as rooted labeled trees,
the tree edit distance can also be used to measure the structural dissimilarity of
XML documents [Guha et al., 2002, Cobena et al., 2002].

3.5 Jaccard's Coefficient
Let us now focus on a different type of data and present a similarity measure

that is applicable to sets. Assuming two sets A and ß , Jaccard's coefficient is
defined as

\A[^B\
d{A,B)^l-

\A[JB\

This distance function is simply based on the ratio between the cardinalities of
intersection and union of the compared sets. As an example of an application
that deals with sets, suppose we have access to a log file of web addresses
(URLs) accessed by visitors to an Internet Cafe. Along with the addresses,
visitor identifications are also stored in the log. The behavior of a user browsing
the Internet can be expressed as the set of visited network sites and Jaccard's

14 SIMILARITY SEARCH

coefficient can be applied to assess the similarity (or dissimilarity) of individual
users' search interests.

An application of this metric to vector data is called the Tanimoto similarity
measure (see for example [Kohonen, 1984]), the distance version of which can
be defined as:

7 / -* -̂ \ -, ^' y
dTs{Xyy) = 1- ,,-.112 , ||->||2 =r—; ^

||xP4- \\yr -x-y
where x - yis the scalar product of x and y, and ||x|| is the Euclidean norm of
X.

3.6 Hausdorff Distance
An even more complicated distance measure defined on sets is the Haus-

dorff distance [Huttenlocher et al., 1993]. In contrast to Jaccard's coefficient,
where any two elements of sets must be either equal or completely distinct,
the Hausdorff distance matches elements based upon a distance function de.
Specifically, the Hausdorff distance is defined as follows. Assume:

dp{x,B) = mfde{x,y),

dp{A,y) = ixif de{x,y),
xGA

ds{A,B) = sup dp{x,B),
xeA

ds(B,A) =: sup dp{A,y).
yeB

Then the Hausdorff distance over sets A,B is:

d{A, B) = max{d5(A, B),ds{B, A)}.

The distance de (x, y) between two elements of sets A and B can be an arbitrary
metric, e.g. the Euclidean distance, and is application-specific. Succinctly put,
the Hausdorff distance measures the extent to which each point of the "model"
set A lies near some point of the "image" set B and vice versa. In other words,
two sets are within the Hausdorff distance r from each other if and only if any
point of one set is within the distance r from some point of the other set. A
typical application is the comparison of shapes in image processing, where each
shape is defined by a set of points in a 2-dimensional space.

3.7 Time Complexity
In general, computing a distance is a nontrivial process which will certainly

be much more computationally intensive than a keyword comparison as used
in traditional search structures. For example, the Lp norms (metrics) are com-
puted in linear time dependent on the dimensionality n of the space. However,

Foundations of metric space searching 15

the quadratic form distance is much more expensive because it involves multi-
pUcations by a matrix M. Thus, the time complexity in principle is 0{v? + n).
Existing dynamic programming algorithms which evaluate the edit distance on
two strings of length n and m have time complexity 0{nm). Tree edit distance
is even more demanding and has a worst-case time complexity of 0{n^), where
n refers to the number of tree nodes. For more details see for example [Lee,
2002]. Similarity metrics between sets are also very time-intensive to evalu-
ate. The Hausdorff distance has a time complexity of 0{nm) for sets of size
n and m. A more sophisticated algorithm by [Alt et al., 1991] can reduce its
complexity to ö{{n + m)log{n + m)) .

In summary, the high computational complexity of metric distance func-
tions gives rise to an important objective for metric index structures, namely
minimizing the number of distance evaluations. Practical uses for the theo-
retical underpinnings discussed in Section 7 are demonstrated in the survey in
Chapter 2.

4. Similarity Queries
A similarity query is defined explicitly or implicitly by a query object q and a

constraint on the form and extent of proximity required, typically expressed as a
distance. The response to a query returns all objects which satisfy the selection
conditions, presumed to be those objects close to the given query object. In
the following, we first define elementary types of similarity queries, and then
discuss possibilities for combining them.

4.1 Range Query
Probably the most common type of similarity query is the similarity range

query R{q, r). The query is specified by a query object q eV, with some query
radius r as the distance constraint. The query retrieves all objects found within
distance r of q, formally:

R{q,r) = {oeX,d{o,q)<r}.

If needed, individual objects in the response set can be ranked according to their
distance with respect to q. Observe that the query object q need not exist in the
collection X C !> to be searched, and the only restriction on q is that it belongs
to the metric domain V. For convenience. Figure 1.2a shows an example of
a range query. In a geographic application, a range query can formulate the
requirement: Give me all museums within a distance of two kilometers from my
hotel.

When the search radius is zero, the range query i?(g, 0) is called 2ipoint query
or exact match. In this case, we are looking for an identical copy (or copies)
of the query object q. The most usual use of this type of query is in delete
algorithms, when we want to locate an object to remove from the database.

16 SIMILARITY SEARCH

% (a) % (b)

Figure 1.2. (a) Range query R{q, r) and (b) nearest neighbor query 3NN{q).

4.2 Nearest Neighbor Query
Whenever we want to search for similar objects using a range search, we

must specify a maximal distance for objects to qualify. But it can be difficult to
specify the radius without some knowledge of the data and the distance function.
For example, the range r = 3 of the edit distance metric represents less than four
edit operations between compared strings. This has a clear semantic meaning.
However, a distance of two color-histogram vectors of images is a real number
whose quantification cannot be so easily interpreted. If too small a query radius
is specified, the empty set may be returned and a new search with a larger radius
will be needed to get any result. On the other hand, if query radii are too large,
the query may be computationally expensive and the response sets contain many
nonsignificant objects.

An alternative way to search for similar objects is to use nearest neighbor
queries. The elementary version of this query finds the closest object to the given
query object, that is the nearest neighbor of q. The concept can be generalized
to the case where we look for the k nearest neighbors. Specifically, kNN{q)
query retrieves the k nearest neighbors of the object q. If the collection to be
searched consists of fewer than k objects, the query returns the whole database.
Formally, the response set can be defined as follows:

kNN{q) = {R C X,\R\ = k Ayx e R,y e X - R : d{q,x) < d{q,y)}.

When several objects lie at the same distance from the k-th nearest neighbor,
the ties are solved arbitrarily. Figure 1.2b illustrates the situation for a 3NN{q)
query. Here the objects oi, 03 are both at distance 3.3 and the object oi is chosen
as the third nearest neighbor (at random), instead of 03. If we continue with
our geographic application, we can pose a query: Tell me which three museums
are the closest to my hotel.

Foundations of metric space searching 17

4.3 Reverse Nearest Neighbor Query
In many situations, it is interesting to know how a specific object is per-

ceived or ranked in terms of distance by other objects in the dataset, i.e., which
objects view the query object q as their nearest neighbor. This is known as
a reverse nearest neighbor search. The generic version, conveniently desig-
nated kRNN{q), returns all objects with q among their k nearest neighbors.
An example is illustrated in Figure 1.3a, where the dotted circles denote the
distance to the second nearest neighbor of objects o .̂ The objects 04,05, OQ
satisfying the 2RNN{q) query, that is those objects with q among their two
nearest neighbors, are represented by black points.

Recent work, such as [Kom and Muthukrishnan, 2000, Stanoi et al., 2001,
Yang and Lin, 2001, Stanoi et al., 2000, Kollios et al., 1999], has highlighted
the importance of reverse nearest neighbor queries in decision support systems,
profile-based marketing, document repositories, and management of mobile
devices. The response set of the general kRNN{q) query may be defined as
follows:

kRNN{q) = {RCX,WxeR:qekNN{x)A
^xeX-R:q^kNN{x)},

Observe that even an object located far from the query object q can belong to the
kRNN{q) response set. At the same time, an object near q need not necessarily
be a member of the kRNN{q) result. This characteristic of the reverse nearest
neighbor search is called the non-locality property. A specific query can ask
for: all hotels with a specific museum as the nearest cultural heritage site.

4.4 Similarity Join
The development of Internet services often requires the integration of hetero-

geneous sources of data. Such sources are typically unstructured whereas the
intended services often require structured data. An important challenge here
is to provide consistent and error-free data, which entails some kind of data
cleaning or integration typically implemented by a process called a similarity
join. The similarity join between two datasets X C V and Y C V retrieves
all pairs of objects {x e X^y e Y) whose distance does not exceed a given
threshold // > 0. Specifically, the result of the similarity join J(X, y, p.) is
defined as:

J(X, y, p) = {{x, y)eXxY: d{x, y) < p}.

If /̂ — 0, we get the traditional natural join. If the datasets X and Y coincide,
i.e., X = y , we talk about the similarity self join and denote it as SJ{p) =
J(X, X, p), where X is the searched dataset. Figure 1.3b presents an example
of a similarity self join SJ{2.b). For illustration, consider a bibliographic
database obtained from diverse resources. In order to clean the data, a similarity

18 SIMILARITY SEARCH

q''-vr:

y \ ""^'i

5 \

••^p.

(a)

0 1 2 3
1 I I • I I I

(b)

Figure 1.3. (a) A reverse nearest neighbor query 2RNN{q) and (b) a similarity self join query
SJ{2.5). Qualifying objects are filled.

join request might identify all document titles with an edit distance smaller than
two. Another application might maintain a collection of hotels and a collection
of museums. The user might wish to find all pairs of hotels and museums which
are a five minute walk apart.

4.5 Combinations of Queries
As an extension of the query types defined above, we can define additional

types of queries as combinations of the previous ones. For example, we might
combine a range query with a nearest neighbor query to get kNN{q^ r) with
the response set:

kNN{q,r) = {R C X,\R\ < k A\fx e R,y e X

d{q, x) < d{q, y) A d{q, x) < r].

R:

In fact, we have constrained the result from two sides. First, all objects in the
result-set should lie at a distance not greater than r, and if there are more than
k of them, just the first (i.e., the nearest) k are returned. By analogy, we can
combine a similarity self join and a nearest neighbor search. In such queries,
we limit the number of pairs returned for a specific object to the value k.

4.6 Complex Similarity Queries
Efficient processing of queries consisting of more than one similarity pred-

icate, i.e., complex similarity queries, differs substantially from traditional
(Boolean) query processing. The problem was studied first by [Fagin, 1996, Fa-
gin, 1998]. The basic lesson learned is that the similarity score (or grade) a

Foundations of metric space searching 19

retrieved object receives as a whole depends not only on the scores it gets for
individual predicates, but also on how such scores are combined. In order to
understand the problem, consider a query for circular shapes of red color. In
order to find the best match, it is not enough to retrieve the best matches for the
color features and the shapes. Naturally, the best match for the whole query
need not be the best match for a single (color or shape) predicate.

To this aim, [Fagin, 1996] has proposed the so-called AQ algorithm which
solves the problem. This algorithm assumes that for each query predicate we
have an index structure able to return objects of decreasing similarity. For
every predicate z, the algorithm successively creates a set Xi containing objects
which best match the query predicate. This building phase continues until all
sets Xi contain at least k common objects, i.e., | P|̂ X^| = fc. This implies that
the cardinalities of sets Xi are not known in advance, so a rather complicated
incremental similarity search is needed (please refer to Section 6.2 for details).
For all objects o G Ui ^i» ^^e algorithm evaluates all query predicates and
establishes their final ranks. Then the first k objects are returned as a result. This
algorithm is correct, but its performance is not very optimal and the expected
query execution costs can be quite high.

[Ciaccia et al., 1998b] have concentrated on complex similarity queries ex-
pressed through a generic language. On the other hand, they assume that query
predicates are from a single feature domain, i.e., from the same metric space.
Contrary to the language level that deals with similarity scores, the proposed
evaluation process is based on distances between feature values, because metric
indexes can use just distances to evaluate predicates. The proposed solution
suggests that the index should process complex queries as a whole, evaluat-
ing multiple similarity predicates at a time. The flexibility of this approach is
demonstrated by considering three different similarity languages: fuzzy stan-
dard, fuzzy algebraic and weighted sum. The possibility to implement such an
approach is demonstrated through an extension of the M-tree [Ciaccia et al.,
1997b]. Experimental results show that performance of the extended M-tree
is consistently better than the AQ algorithm. The main drawback of this ap-
proach is that even though it is able to employ more features during the search,
these features are compared using a single distance function. An extension
of the M-tree [Ciaccia and Patella, 2000a] which goes further is able to com-
pare different features with arbitrary distance functions. This index structure
outperforms the AQ algorithm as well. Details of this structure are given in
Chapter 3.

A similarity algebra with weights has been introduced in [Ciaccia et al.,
2000]. This is a generalization of relational algebra to allow the formulation of
complex similarity queries over multimedia databases. The main contribution
of this work is that it combines within a single framework several relevant

20 SIMILARITY SEARCH

(a) (b) (c)

Figure 1.4. Examples of partitioning: (a) the ball partitioning, (b) the generalized hyperplane
partitioning, and (c) the excluded middle partitioning.

aspects of the similarity search, such as new operators (Top and Cut), weights
to express user preferences, and scores to rank search results.

5, Basic Partitioning Principles
Partitioning, in general, is one of the most fundamental principles of any

storage structure, aiming at dividing the search space into sub-groups, so that
once a query is given, only some of these groups are searched. Given a set
S QV of objects in metric space M = (P, d), [Uhlmann, 1991] defines ball
partitioning and generalized hyperplane partitioning, while [Yianilos, 1999]
suggests excluded middle partitioning. In the following, we briefly characterize
these techniques.

5.1 Ball Partitioning
Ball partitioning breaks the set S into subsets Si and ^2 using a spherical

cut with respect to p G P , where p is the pivot, chosen arbitrarily. Let dm be
the median of {(i(o^,p), Vô € S}. Then all Oj G S are distributed to Si or ^2
according to the following rules:

• ^i ^ {Oj I d{Oj,p) < dm}.

• S2 ^ {oj I d{oj,p) > dm}'

The redundant conditions < and > assure balance when the median value is not
unique. This is accomplished by assigning each element at the median distance
to one of the subsets in an arbitrary, but balanced, fashion. An example of a data
space containing twenty-three objects is depicted in Figure 1.4a. The selected
pivot p and the median distance dm establish the ball partitioning.

Foundations of metric space searching 21

5.2 Generalized Hyperplane Partitioning
Generalized hyperplane partitioning can be considered as an orthogonal prin-

ciple to ball partitioning. This partitioning also breaks the set S into subsets
^i and 82- This time, though, two reference objects (pivots) pi,p2 ^ ^ are
arbitrarily chosen. All other objects Oj G S are assigned to Si or ^2 depending
upon their distances from the selected pivots as follows:

• ^1 ^ {oj I d{pi,Oj) < d{p2,0j)},

m 82^ {oj I d{pi,Oj) > d{p2,0j)}.

In contrast to ball partitioning, the generalized hyperplane does not guarantee a
balanced split, and a suitable choice of reference points to achieve this objective
is an interesting challenge. An example of a balanced split of a hypothetical
dataset is given in Figure 1.4b.

53 Excluded Middle Partitioning
Excluded middle partitioning [Yianilos, 1999] divides S into three subsets

^ i , S2 and S3. In principle, it is an extension of ball partitioning which has been
motivated by the following fact: Though similarity queries search for objects
lying within a small vicinity of the query object, whenever a query object
appears near the partitioning threshold, the search process typically requires
accessing both of the ball-partitioned subsets. The central idea of excluded
middle partitioning is therefore to leave out points near the threshold dm in
defining the two subsets Si and 52- The excluded points form the third subset
Ss. An illustration of excluded middle partitioning can be seen in Figure 1.4c,
where the dark objects fall into the exclusion zone. With such an arrangement,
the search for similar objects always ignores at least one of the subsets ^i
or ^2, provided that the search selectivity is smaller than the thickness of the
exclusion zone. Naturally, the excluded points cannot be lost, so they can
either be considered to form a third subset or, if the set is large, the basis of
a new partitioning process. Given the thickness of the exclusion zone 2p, the
partitioning can be defined as follows:

• ^1 ^ {Oj I d{0j,p) <dm- p},

m S2<- {oj I d{0j,p) > dm + p},

m Ss <— Otherwise.

Figure L4c also depicts a situation where the split is balanced, i.e., the cardi-
nalities of ^i and S2 are the same. However, this is not always guaranteed.

5.4 Extensions
Naturally, the basic partitioning principles can be generalized and extended

in several ways. In principle.

22 SIMILARITY SEARCH

• The binary partitioning can be extended into multiple partitioning by con-
sidering several thresholds, i.e., the set S can be divided into k > 2 groups.

• The partitioning process can continue recursively so that a tree organization
can be built in a top-down way.

Specific combinations of these strategies have resulted in numerous practical
storage structure designs, a survey of which is the subject of Chapter 2.

6. Principles of Similarity Query Execution
In the following, we discuss some general, rather abstract, principles of sim-

ilarity query execution. In addition to partitioning principles, strategies for
query execution form another important part of any search structure because
they can significantly influence the efficiency of answering queries. In Sec-
tion 6.1 we first concentrate on similarity range and nearest neighbor queries
using two model structures: the sequential scan and a class of hierarchically
partitioned structure. Section 6.2 is devoted to the more generic case of the
so-called incremental similarity search.

6.1 Basic Strategies
The simplest, not always inefficient, strategy for executing similarity queries

can be defined on a sequential organization of objects. Since the query object
g is a search parameter which varies from search to search, the ordering of data
objects with respect to q cannot be guaranteed, and all objects of a given file must
therefore be processed. For a similarity range query, the response set is obtained
by consecutively computing distances of data objects to q, and objects inside
of the threshold r incrementally form the response set. The construction of
the set of nearest neighbors is also an incremental process. Assuming k < n,
the initial version of such a set is formed by the first k objects ordered with
respect to their distance from q. For all the others, an object Oi is inserted in
the response set if and only if d{q^ oi) < d{q^ Ok), where Ok is the fc-th nearest
neighbor of g at a given stage of query execution. Whenever a new object is
inserted in the response set, the previous fc-th nearest neighbor is eliminated.

To achieve sub-linear search complexity, numerous similarity search struc-
tures have been proposed (see Chapter 2 for a survey of the most important).
These separate data objects into subsets in such a way that only some of the
subsets need to be accessed to solve a given query. As we will see later, organi-
zational strategies differ wildly, depending upon their underlying partitioning
principles (see Section 5) and connecting structures.

In order to demonstrate the generic principles of search strategies used in
index structures, we assume a kind of hypothetical organization of metric data.
Specifically, an entry N — {G^1Z{G)) of the structure consists of a set G
of metric objects or other entries, and a specification of the bounding region

Foundations of metric space searching 23

Range Search Algorithm
Input: query region TZ{Q).
Output: response set response.

Enter information about an available entry into PR.
response -e- 0
while PR 7̂ 0 do

Extract entry Â -: (G, 7^(G)) from PR.
foreach object entry Oj e G do

if d{q^Oj) < r then
Oj -^ response

enddo
foreach non-object entry N' =: {C,n{C)) G G do

if 7^(G0 and7^(Q) intersect then
Insert the entry N' into PR.

enddo
enddo

Figure 1.5. Search algorithm for range queries Q = R{q^ r).

Tl{G). A bounding region of G represents a constraint on the metric that must
be satisfied by all elements e e G. For example, a bounding region of a set
G of objects specified by a preselected object p and a radius r implies that
Vo e G, d{o^p) < r. For convenience, such bounding regions are often called
ball regions. In practice, bounding regions can be formed by more complex
conditions. As a rule, each element belongs to exactly one group (one set G)
while the individual bounding regions may overlap. For simplicity, we assume
that entries form a hierarchy and that the search always starts at the root entry.
Since any similarity query Q returns a set of objects, we can always define a
bounding region around the objects by analogy. We designate such region by
n{Q).

To outline the principles of search algorithms, we assume the properties
(bounding constraints) of data regions are known, including pointers to their
instance sets. Since an entry can contain other entries, search algorithms are
recursive and an implementation without recursion requires a queue of Pending
Requests, PR, as an auxiliary data structure. The similarity range query Q =
R{q^r) can be solved using the algorithm presented in Figure 1.5. We also
present the algorithm for executing the nearest neighbor query Q — kNN{q),
see Figure 1.6.

24 SIMILARITY SEARCH

Nearest Neighbor Search Algorithm
Input: query object q, number of neighbors k.
Output: response set response of cardinality k.

Enter information about an available entry into PR.
Fill response with k (random) objects from X.
Adjust TZ{Q) according to the maximum distance from q

in the response designated as r.
Sort entries in PR with decreasing region proximity toTZ{Q).
while PR 7̂ 0 do

Extract the first entry N = (G, 7^(G)) from PR.
foreach object entry Oj e G do

if d{q^Oj) < r then
Update the response, r, and TZ{Q) by inserting Oj and

removing the most distant object from q.
Remove all entries A '̂ = {G\ 71(0')) from PR

which no longer intersects TZ{Q).
endif

enddo
foreach non-object entry N' = {G\ Tl{G')) G G do

if7e(G0 and 7^(g) intersect then
Insert the entry N' into PR.

endif
enddo
Sort entries in PR with decreasing region proximity to TZ{Q).

enddo

Figure 1.6. Search algorithm for nearest neighbor queries.

Partitioned organizations for similarity queries typically consist of many
subsets, usually characterized by bounding spheres, i.e., ball regions. Aggregate
information of this type is used for querying, specifically for pruning subsets
that cannot contain qualifying objects. When a range query is considered, it is
easy to see that ball regions having zero overlap with the query region can safely
be ignored. On the other hand, all regions overlapping the query region should
be accessed and the queue PR is used to keep track of such regions encountered
during query execution.

Even with nearest neighbors queries, the situation is in principle quite similar.
By setting the distance to the k-th nearest neighbor as the search radius, we can
transform the nearest neighbor query into a range query. In this case, the radius

Foundations of metric space searching 25

will not be known in advance, but as [Hjaltason and Samet, 1999] detail, good
nearest neighbor search strategies only access subsets whose regions overlap
with the region of the query response. In order to achieve this, a queue of
candidate regions PR is maintained, and the regions are accessed starting with
the most promising, that is, with the region nearest to the query region.

6.2 Incremental Similarity Search
An incremental similarity search can provide objects in order of decreas-

ing similarity without explicitly specifying the number of nearest neighbors
in advance. This is especially important in interactive database applications,
as it makes it possible to display partial query results early. The incremen-
tal aspect also provides significant benefits in situations where the number of
desired neighbors is unknown beforehand, for example when complex similar-
ity queries are processed. In the following, we outline an algorithm proposed
by [Hjaltason and Samet, 2000].

The incremental nearest neighbor algorithm is applicable whenever the search
space is structured in a hierarchical manner such as one we have defined above.
However, the authors use a different approach to define the hierarchy. The
chief difference lies in defining specialized distance functions instead of cover-
ing regions, which allows a more straightforward explanation of the incremental
search algorithm.

For a query object q the algorithm operates on a file X organized by a
structure T as follows: The search hierarchy is composed of elements et of
several different types t = 0 , . . . , tmax- Each element represents a subset of X,
with an element eo of type 0 representing a single object in X. An element et of
type t can give rise to one or more child elements of type 0 through t — 1, thus the
search problem for et is decomposed into several smaller sub-problems. Each
element of type t has an associated distance function dt{q^ et) which measures
the distance from a query object q to elements of that type. For correctness, it is
sufficient that dt{q^ et) < do{q, eo) for any object eo in the subset represented
by et. In this way, the function dt bounds the distances from q to the objects
in the subtree of et from below. The general incremental algorithm for kNN
queries is specified in Figure 1.7.

The algorithm starts off by initializing the queue of pending requests with the
root of the search structure - since the order of entries in this queue is crucial,
we refer to it as the priority queue. In the main loop, the element et closest to q
is taken off the queue. If it is an object, we report it as the next nearest object.
Otherwise, the child elements of et in the search hierarchy are inserted into the
priority queue.

This algorithm can easily be adapted to take advantage of imposed distance
bounds, as in a range query, as well as the maximum result size, as in a fc-nearest

26 SIMILARITY SEARCH

Incremental Nearest Neighbor Search Algorithm
Input: query object q, search hierarchy T.
Output: nearest neighbors in decreasing similarity.

et <— root of the search hierarchy
queue ^r- 0
ENQUEUE(queue, e^ 0)
while queue 7̂ 0 do

et ^ DEQUEUE(queue)
if t == 0 then {et is an object)

Report et as the next nearest object.
else

foreach child element e/ of et do
ENQUEUE(queue, e/, di{q, e/))

enddo
endif

enddo

Figure 1.7. Incremental search algorithm for nearest neighbor queries.

neighbors query. In particular, given a maximum distance bound d"̂ , we only
enqueue elements distant from q by less than or equal to d^.

A useful extension of the algorithm is to find the farthest neighbor of a query
object. This means defining another set of functions dtiq, et) that bound the
distances from q to the objects under et from above. By replacing dt{q^ et) as a
key for any element et on the priority queue with a negative function —dt (g, e^),
we order the elements in the priority queue inversely. Thus, once an object has
reached the front of the priority queue, we know there is no unreported object
more distant from q.

7. Policies for Avoiding Distance Computations
Since the performance of similarity search in metric spaces is not only I/O,

but also CPU-bound, as discussed in Section 3.7, it is very important to limit
the number of distance computations as much as possible. To this aim, prun-
ing conditions must be applied not only to avoid accessing irrelevant sets of
objects, but also to minimize the number of distances computed. The rationale
behind such strategies is to use already-evaluated distances between some ob-
jects, while properly applying the metric space postulates - namely the triangle
inequality, symmetry, and non-negativity - to determine bounds on distances
between other objects.

Foundations of metric space searching 27

(a) (b)

Figure 1.8. (a) Recursive ball partitioning of a metric space, (b) corresponding binary tree.

In this section, we describe several bounding strategies, originally proposed
in [Hjaltason and Samet, 2000] and refined in [Hjaltason and Samet, 2003a].
These techniques represent general pruning rules that are employed, in a specific
form, in practically all index structures for metric spaces. The following rules
thus form the basic formal background. The individual techniques described
differ as to the type of distance we have available, as well as what kind of
distance computation we seek to avoid.

?•! Explanatory Example
Consider a hypothetical index structure based on a recursive application of

the ball partitioning procedure defined in Section 5. Figure 1.8a illustrates a
recursively partitioned metric space of objects o i , . . . , on. The first level of the
corresponding binary tree in Figure 1.8b is created by applying ball partitioning
using the pivot pi. The inner partition in Figure 1.8a (corresponding to the left
subtree in Figure 1.8b) is divided using the same principle again, this time with
the object p2 as a pivot. As you can see from the figures, the ball partitioning
has so far only split the inner partition at the first level. The outer area remains
untouched. This is then itself divided using the pivot pa.

In general, a search algorithm for range queries Ä(g, r) works in top-down
fashion. It starts at the root node where it decides which partitions must be
visited and then descends the tree. Specifically, in each internal node, the
algorithm computes distances d(pi^ q) between the pivot pi and the query object
q. By respecting the median values drm and the query radius r, the algorithm
determines all subtrees which might contain qualifying data. In a leaf node, the
query object q is compared with the data objects Oj and any objects satisfying

28 SIMILARITY SEARCH

•̂

O 4 O 6 Q 1 0 I I Q 1 Q 5 Q 1 1 I I Q 2 Q 9 I I Q 3 Q 7 Q 8

(a) (b)

Figure 1.9. Range search for query R(q,r): (a) from the geometric point of view, (b) algorithm
accessing the left-most leaf node.

the range search constraint d(q^ Oj) < r are reported. However, in both types
of nodes, we can apply some rules (bounding constraints) that would optimize
the search procedure by avoiding (possibly expensive) distance computations.
Such techniques are clarified in the following.

7.2 Object-Pivot Distance Constraint
The basic type of bounding constraint is the object-pivot distance constraint,

so called because it is usually applied to leaf nodes containing the data, i.e.,
the metric objects of the searched collection. Figure 1.9 demonstrates a sit-
uation in which such a bounding constraint can be beneficial with respect to
the trivial sequential scan computing distances to all objects. Assume a range
query R{q^ r) is issued (see Figure 1.9a) and the search algorithm has reached
the left-most leaf node as illustrated in Figure 1.9b. At this stage, the se-
quential scan would examine all objects in the leaf, i.e., compute the distances
d{q^ 04), d{q, oe), d(q, oio), and decide qualifying objects. However, provided
the distances d{p2,04), d{p2j OQ), d{p2^ oio) are in memory (having been com-
puted during insertion) and the distance from q to p2 is d{q^ P2), some distance
evaluations can be omitted.

Figure 1.10a shows a detail view of the situation. The dashed lines represent
distances we do not know and the solid lines, known distances. Suppose we
need to estimate the distance between the query object q and the database object
oio. Given only an object and the distance from it to another object, the object's
precise position in space cannot be determined. Knowledge of the distance alone
is not enough. With respect to p2, for example, the object oio could lie anywhere

Foundations of metric space searching 29

(a)

O

(b) (c)

Figure 1.10. Illustration of the object-pivot constraint: (a) our model situation, (b) the lower
bound, and (c) the upper bound.

along the dotted circle representing all equidistant positions. This also implies
the existence of two extreme possible positions for oio with respect to the
query object q, a closest and furthest possible position. The former is depicted
in Figure 1.10b while the latter is shown in Figure 1.10c. Systematically, the
lower bound is computed as the absolute value of the difference between d(g, p2)
and d{p2', oio), while the sum d{q^ p2) and d{p2', ^lo) forms the upper bound on
the distance d{q^ oio).

In our example, the lower bound on distance d(g, oio) is greater than the
query radius r, thus we are sure the object oio cannot qualify the query and can
skip it in the search process without actually computing the distance. If, on the
contrary, we focus on the object oe, it can be seen from Figure 1.10c that the
upper bound on d{q^ OQ) is less than r. As a result, OQ can be directly included
in the query response set because the distance d{q., OQ) cannot exceed r. In both
cases described, one distance computation is omitted, speeding up the search
process. Concerning the object 04, we discover that the lower bound is less
than the radius r and the upper bound is greater than r. That means 04 must
be compared directly against q using the distance function, i.e., d{q^ 04) must
be computed to decide whether 04 is relevant to the query or not. We formally
summarize the ideas described in Lemma 1.1.

LEMMA 1.1 Given a metric space A4 = (P, d) and three arbitrary objects
q^p^o E V, it is always guaranteed:

\d{q,p)-d{p,o)\ < d{q,o) < d{q,p) + d{p,o).

Consequently, the distance d{q^ o) can be bounded from below and above, pro-
vided the distances d{q^ p) and d{p^ o) are known. •

30

0 ,

SIMILARITY SEARCH

Closest to q Furthest from q K-

0

0„

(a) (b) (c)

Figure I.II. Illustration of the range-pivot constraint: (a) our model situation, (b) the lower
bound, and (c) the upper bound.

7.3 Range-Pivot Distance Constraint
The object-pivot distance constraint described above assumes that all dis-

tances between the database objects Oi and the respective pivot p are known.
However, some metric structures try to minimize the space needed to build the
index, so storing such an amount of data is not acceptable. An alternative is
to store only a range (a distance interval) in which the database objects occur
with respect to p. Here, we can apply a weaker condition called the range-pivot
distance constraint.

Consider Figure 1.9 with the range query R{q^r) again and assume the search
procedure is just about to enter the left-most leaf node of our sample tree. At
this stage, a sophisticated search algorithm should decide if it is necessary to
visit the leaf or not, i.e., whether any qualifying object can be found at this
node. If we know the interval [r/, r/̂] in which distances from the pivot p2 to
all objects 04,06,010 occur, it can be applied to solve the problem. A detail of
such a situation is depicted in Figure 1.11a, where the dotted circles represent
limits of the range and the known distance between the pivot and the query is
emphasized by a solid line. The shortest distance from q to any object lying
within the range is r/ — d{q^ P2) (see Figure 1.1 lb). Obviously, no object can be
closer to q, because it would be nearer p2 than the threshold ri otherwise. By
analogy, we can define the upper bound as r^ + d{q^p2), see Figure 1.11c. In
this way, we have two expressions which limit the distance between an object
and the query q.

To reveal the usefulness of this, consider range queries again. If the lower
bound is greater than the query radius r, we are sure that no qualifying object
can be found and the node need not be accessed. On the other hand, if the upper
bound is less than or equal to r, we can conclude that all objects qualify and
directly include all descendant objects in the query response set - no further dis-

Foundations of metric space searching 31

y T

le-"---....
q

(a)

/y-r]
; ; y ^

X

"/>o \
'̂ y^

\ \ V / \ < q ,•••

1
: .* • '

•;Tf-

^ /̂
i \ /̂ F / :

/•.
\ ^ - ••••" /

••.. q

(b) (c)

Figure 1.12. Illustration of Lemma 1.2 with three different positions of the query object: (a)
above, (b) below and (c) within the range [ri, rh]-

tance computations are needed at all. Note that in the model situation depicted
in Figure 1.11, we can neither directly include nor prune the node, so the node
must be accessed and its individual objects examined instance by instance.

Up to now, we have only examined one possible position for the query and
range, and stated two rules concerning the search radius r. Before we give
a formal definition of the range-pivot constraint, we illustrate three different
query positions in Figure 1.12, namely: above the range [ri^rh] in (a), below
the range in (b), and within the interval in (c). We can bound d{q^ o), provided
n ^ d{p^o) < Th and the distance d{q^p) is known. The dotted and dashed
line segments denote the lower and upper bounds, respectively. At a general
level, the problem can be formalized as follows:

LEMMA 1.2 Given a metric space M = {T^^d) and objects o^p E V such
that ri < d(o^ p) < r^, and given some q E V and an associated distance
d{q^ p)y the distance 'd(q^ o) can be restricted by the range:

max{%,p) -Th, n - d{q,p), 0} < d{q,o) < d{q,p) + rh^

D

7.4 Pivot-Pivot Distance Constraint
We have just described two principles which lead to a performance boost

in search algorithms. Now, we turn our attention to a third approach which,
while weaker than the foregoing two, still provides some benefit. This is the
pivot-pivot distance constraint, and to explain it we once again make use of
the hypothetical index structure depicted in Figure 1.8. Consider a situation in
which the range search algorithm has approached the internal node with pivot
pi (the root node of the structure) and the distance d{q^pi) has been evaluated.
Here, the algorithm can apply Lemma 1.2 to decide which subtrees to visit.
The careful reader may object that the range of distances with respect to the
pivot pi must be known separately for both left and right branches. But this

32 SIMILARITY SEARCH

^o,.

(a) (b)

Figure 1.13. (a) The lower r[and upper r^ bounds on distance d{q,p2), (b) the range [ri.rh]
on distances from p2 and database objects - the range from (a) is also included.

is simple to achieve, because every object inserted into the structure must be
compared with pi. Thus, we can assume that the correct intervals are known.
The specifics of applying Lemma 1.2 are left to the reader as an easy exercise.

Without loss of generality, we assume the algorithm has followed the left
branch, reaching the node with pivot p2- Now, the algorithm could compute
the distance d{q^p2) and apply Lemma 1.2 again. But since we know the
distance d{q^pi), then if we also know the distance between pivots pi and p2,
we can employ Lemma 1.1 to get an estimate of d{q^p2) without computing
it, since d{q^p2) G [r[,r^]. In fact, we have now an interval on d{q^p2) and
an interval on (i(p25 oi), where objects Oi are descendants of p2- Specifically,
we have d{q^p2) G [r[, r^] and d{p2^ oi) G [r/, r/^]. Figure 1.13 illustrates both
intervals. Figure 1.13a depicts the range on d{q^p2) with the known distance
d{q^ Pi) emphasized. In Figure 1.13b, the second interval on distances d{p2, oi)
is given in addition to the first interval, indicated by two dotted circles around
the pivot p2- The purpose of these ranges is to give bounds on distances between
q and database objects o ,̂ leading to a faster qualification process that does not
require evaluating distances between q and oi, nor even computing d{q^p2).
The figure shows both ranges intersect, which implies that the lower bound on
d{q^ Oi) is zero. On the other hand, the sum r^ + rĵ obviously forms the upper
bound on the distances d{q^ oi).

The example in Figure 1.13 only depicts the case when the ranges intersect.
In Figure 1.14, we show what happens when the intervals do not coincide. In
this case, the lower limit is equal to r[— r^, which can be seen easily from
Figure 1.14a. Figure 1.14b shows another view of the upper bound. The third
possible position for the interval is opposite that depicted in Figure 1.14. This
time, the intervals have been reversed, giving a lower limit of vi — r'^^. The
general formalization of this principle is as follows:

Foundations of metric space searching 33

Figure 1.14. Illustration of Lemma 1.3: (a) the ranges [ri,rh] and [r[, r ^ do not intersect, so
the lower bound is r[— rh\ (b) the upper limit rh + r'^-

LEMMA 1.3 Given a metric space M — (P, d) and objects o^p^q e V such
that ri < d{p^o) < r^ and r'l < d{q^p) < r^, the distance d{q^o) can be
bounded by the range:

max{r[- r/,, n - r'j,, 0} < d{q, o)<rk + r^.

D

7.5 Double-Pivot Distance Constraint
The three previous approaches to speeding up the retrieval process in metric

structures all use a single pivot, in keeping with the ball partitioning paradigm.
Next we explore an alternate strategy based upon generalized hyperplane parti-
tioning. As defined in Section 5, this technique employs two pivots to partition
the metric space.

Figure 1.15a shows an example of generalized hyperplane partitioning in
which pivots pi,p2 are used to divide the space into two subspaces - objects
nearer pi belonging to the left subspace and objects nearer to p2 to the right.
The vertical dashed line represents points equidistant from both pivots. With
this partitioning we cannot establish an upper bound on the distance from query
object q to database objects o ,̂ because the database objects may be arbitrarily
far away from the pivots. Thus only lower limits can be defined.

First, let us examine the case in which objects o and q are in the same sub-
space, not considered in Figure 1.15. Obviously the lower bound will equal
zero, since it is possible some objects may be identical. Next, we consider
the situation in Figure 1.15a, where the lower bound (depicted by a dotted
line) is equal to {d{q^pi) — d{q^p2))/2. In Figure 1.15b, the hyperbolic curve
represents all possible positions of the query object q with a constant value of
(d(g, pi) — d{q^ p2))/2. If we move the query object q up vertically while main-
taining the distance to the dashed line, the expression {d{q^pi) — d{q^p2))/2

34 SIMILARITY SEARCH

^^^
q P2 Pi

(a)

Figure 1.15. Illustration of Lemma 1.4: (a) the lower bound on d{q,o), (b) the equidistant
positions of q with respect to the lower bound, and (c) shrinking the lower bound.

decreases. For illustration, see Figure 1.15c, where q' represents the new posi-
tion of the query object. Consequently, the expression {d{q^pi) — d{q^p2))/2
is indeed the lower bound on d{q^ o). The formal definition of this double-pivot
distance constraint is given in Lemma 1.4.

LEMMA 1.4 Assume a metric space M — iV^d) and objects o,pi,p2 € ^
such that d{o^pi) < (i(o,p2)- Given a query object q E V and the distances
d{q^Pi) cind d{q^p2), the distance d{q^ o) is lower-bounded as follows:

' d{q,pi) - d{q,p2)
max , Q)<d{q,o).

D

We should point out this constraint does not employ any already-evaluated
distance from a pivot to a database object. If we knew such distances to both
pivots we would simply apply Lemma 1.1 twice, for each pivot separately. The
concept of using known distances to several pivots is detailed in the following.

7.6 Pivot Filtering
Given a range query R{q^r), we can eliminate database objects by apply-

ing Lemma 1.1, provided we know the distance between p and all database
objects. This situation is demonstrated in Figure 1.16a, where the white area
contains objects that cannot be eliminated under such a distance criterion. After
elimination, the search algorithm would proceed by inspecting all remaining
objects and comparing them against the query object using the original dis-
tance function, i.e., for all non-discarded objects ô , verify the query condition
d{q, Oi) < r.

To achieve a greater degree of pruning, several pivots can be combined into
a single pivot filtering technique [Dohnal, 2004]. The underlying idea is shown
in Figure 1.16b, where the reader can observe the improved filtering effect for
two pivots. We formalize this concept in the following lemma.

Foundations of metric space searching 35

Figure 1.16. Illustration of filtering technique: (a) using a single pivot, (b) using a combination
of pivots.

LEMMA 1.5 Assume a metric space M. — (X>, d) and a set of pivots P =
{Pij''' iPn}- We define a mapping function"^: (P, d) -^ {W^^ Loo) asfollows:

^(o) = {d{o,pi), d{o,p2),..., d{o,Pn)).

Then, we can bound the distance d{q^ a) from below:

Loo{^{q),^{o))<d{q,o).

D

The mapping function ^(•) returns a vector of distances from an object o
to all pivots in P. For a database object, the vector actually contains the pre-
computed distances to pivots. On the other hand, the application of ^(•) on
a query object q requires computation of distances from the query object to
all pivots in P. Once we have the vectors ^(g) and ^(o), the lower bound
criterion can be applied to eliminate the object a if \d{q^pi) — d{o^pi)\ > r for
any pi G P. The white area in Figure 1.16b represents the objects that cannot
be eliminated from the search using two pivots. These objects will still have to
be tested directly against the query object q with the original metric function d.

The mapping ^(•) is contractive, that is the distance LOO(^(ÖI), ^(02))
is never greater than the distance (i(oi, 02) in the original metric space. The
outcome of a range query performed in the projected space (R'^,Loo) may
contain some spurious objects that do not qualify for the original query. To get
the final result, the outcome has to be tested by the original distance function d.
More details about the metric space transformations can be found in the next
section.

8. Metric Space Transformations
It is intuitively clear that transforming one metric space into another actually

means mapping all objects to a new domain so a different distance function can

36 SIMILARITY SEARCH

be used. In general, we change both the objects and the metric function, but, as
we shall see, several applications of this concept may demand only the metric
function or the domain be changed. The new domain allows a similarity query
in the transformed space to be substituted for a query in the original metric
space. The motivation may be to enable a less expensive computation, and
in this case we talk about a metric space embedding, explained in Section 8.3.
Otherwise, the transformation may be done to take user-defined searchfiinctions
into account - see Section 8.2.

Obviously there must be additional restrictions in order to maintain a cor-
relation between query results in the original and transformed metric space.
These restrictions are formally defined in Section 8.1 using a concept labeled
lower-bounded metric fiinctions.

8.1 Metric Hierarchies
Before detailing specific techniques, we define the transformation of a metric

space Ml = {Vi^di) into a metric space M2 = (^2)^2) as a function / :
P i -> ©2, such that

Voi, 02 G r^i : rfi(oi, 02) ^ d2{f{oi), /(02)).

Note that the distance in the transformed metric space may not exactly equal
the original distance. For purposes of similarity search, it is necessary to define
a relation between distances in the original and the transformed metric spaces.

We say that di is a lower-bounding distance fiinction of d2 if di is an under-
estimate of d2, that is

Voi, 02 G Ü1 : di{oi, 02) < d2(/(oi), /(02)).

Now assume instead that di is not a lower-bounding distance function of ^2- We
can define a new scaled distance fiinction (iis (oi, 02) = Sd^ ̂ 0,2 * <̂ i (^i 5 ^2) such
that dis is a lower-bounding distance function of 2̂» where 0 < Sfii-^d2 < 1
is a real number called the scaling factor. Clearly, it is not always possible to
define dis because a convenient scaling factor cannot be obtained for every pair
of distance functions ^1,^2. However, if Sd-^^d2 exists, an infinite number of
other values of the scaling factor can be found. Therefore, it is advisable to
consider the maximum value, since it makes dis a tight lower bound of ^2- The
maximum value of the scaling factor is termed the optimal scaling factor. For
a complete explanation see [Ciaccia and Patella, 2002].

8.1.1 Lower-Bounding Functions
Having given a definition for lower-bounding distance functions, we provide

the reader with examples of some of the most common ones. When necessary,
a scaling factor is provided.

Foundations of metric space searching 37

Lp Norms. Any Lp norm is a lower-bounding distance function for all Lp/
norms with p' > p. For example, let F — R x E be a 2-dimensional vector
space. Given a pair of vectors x^y e V, the L2 and Li, distances are defined
as follows:

dL^ix.y) = Y (xi - yif + (x2 - y2)^ ,

dL^{x,y) = \xi - yi\ + \x2 - y2\'

It is apparent that the Li metric function will always be bigger than L2 for the
same pair of vectors given as arguments. Thus, L2 forms a lower-bounding
function on Li.

For all other norms, i.e., ^ < p, a lower-bounding scaled distance function
1 _ i

Lps can be defined. The optimal scaling factor is equal to 5 = 1/np^ p,where
n is the dimensionality of the underlying vector space.

Quadratic Form Distance Functions. In [Hafner et al., 1995, Seidl and
Kriegel, 1997] it is proved that a lower-bounding distance function for the
class of quadratic form distance functions dM (where M is the quadratic form
matrix) is a scaled L2 norm, denoted L2s- The optimal scaling factor s is given
by the square root of the minimum eigenvalue of M, s = ^minjjAj}, where
XjS denote eigenvalues of M.

Weighted Edit Distances. Let 7 be a weight function that assigns a non-
negative cost to each replacement operation of edit distance dedu- That is
Va, 6 G S : 7(a -^ b) e M"̂ , where S is an alphabet over which strings are
built. A weighted edit distance d^edit is then the lower-bounding function of
d^edit if äiid only if 7'(a —> 6) < 7(a —̂ b) for every replacement a -^ b.

Otherwise, a scaling factor for dy^dit i^ust be provided. The optimal scaling
factor is given by the minimum ratio between the cost of edit operations with 7'
versus 7 weight functions, that is, 5y^^ = mina,6GS,a7^6{7(<^ -^ b)/^'{a -^
b)}. The idea behind this is to fix 7' below the function 7 by multiplying the
results of 7' with a value smaller than one (i.e., the scaling factor).

Multi-set Distance. Given a string x, let ms{x) denote the multi-set (bag)
of symbols in x. For instance, m5("tree") = {t, r, e, e}. The following can
easily be proved to be a metric on multi-sets: dmsi^^y) — niax{|m5(x) —
ms{y)\^ \ms{y) — ms{x)\}, where the difference has a bag semantics (e.g.
{a, a, a, b} — {a, 6, c, c} = {a, a}) and | • | counts the number of elements
in a multi-set (e.g. |{a, a} | = 2). It is immediately apparent that dmsi^i v)
is a lower-bounding distance for the unweighted edit distance: \/x^y G S*,
dms{x,y) < dedit{x,y).

3 8 SIMILARITY SEARCH

8.2 User-Defined Metric Functions
The notion of similarity, which ultimately determines the evaluation and the

ranking of database objects, may vary from user to user. Thus, it should be
made user-dependent to improve the effectiveness of similarity queries, so as to
allow users sufficient flexibility in stating their preferences [Chomicki, 2002].
As an example, one user looking for a second-hand car on a trading site could
be more interested in the car's price than its speed, whereas the opposite might
hold true for another user.

Preferences on simple domains, such as in the example above, are easy to
adjust. However, it might be difficult to specify user's preferences for complex
domains such as color histograms, since it requires defining all the histogram
values. There are applications with even more complex domains, like multime-
dia or data mining systems, where the preferences are simply beyond imagina-
tion of an ordinary user. In this respect, the tuning of the parameters may best
be left to the system, which takes the burden of automatically "learning" pref-
erences by monitoring the user's activity [Cetintemel et al., 2000] or exploiting
feedback from previous queries [Ortega-Binderberger et al., 2002].

In a metric space, let us have an index structure built using a metric function
di) defined on a domain V. Another metric function du on the same domain V
is either explicitly specified by a user or automatically estimated by the system.
The actual results of a user query must be computed according to du. To be able
to exploit the index structure, the concept of lower-bound distance functions is
used, as explained in the following.

8.2.1 Searching Using Lower-Bounding Functions

Because the user may specify a personalized function not constrained by the
lower bounding concept, we define yet another metric function dp on domain
D, such that dp is the lower-bound of both the building function d̂ and user's
function du, i.e.

Voi,02 G V : dp{oi,02) < 4(01,02),dp(oi,02) < c/^(oi,02).

Therefore, we can use dp to search the index structure which has been built
using di) and retrieve only "promising" objects. Next, we use du to filter out
irrelevant (false positive) matches.

More specifically, we retrieve a correct result-set for the user-specified query.
Following the equations above, we can use dp in a particular evaluation of a
similarity query in the index structure, because every distance measured by
dp will always be less than or equal to d .̂ Thus we will always have at least
the results obtained for d .̂ However, we may retrieve superfluous objects. The
result will always contain all potential matches for the user-defined function du,
but some false-positives may also have been added in. Again, this property is
inherited from the fact that dp is a lower-bounding function of dw The filtering

Foundations of metric space searching 39

phase ensures the results will not contain the irrelevant objects. A full proof
along with modified algorithms for range and kNN queries can be found in
[Ciaccia and Patella, 2002].

8.3 Embedding Metric Space
As stated earlier, some distance functions can be very expensive computa-

tionally. Therefore, it is desirable to substitute cheaper distance functions like
the Lp metrics for these calculations. A common approach to achieving this is
to map, or embed, the set of objects into points in a low-dimensional embed-
ding vector space and conduct the search in that space. Intuitively, the rationale
for performing such a mapping is that distances in the embedding space ap-
proximate the distances between objects in the original space but searching the
embedding space is less expensive.

We have outlined the concept in Section 8.1. We use a transformation func-
tion / , such that the distances in the embedded vector space form lower bounds
on the distances in the original metric space. The range query R{q^r) evaluation
process is modified as follows. (We focus on range queries only for the sake
of simplicity, but other query types follow the same pattern.) The query object
q is transformed using the function / into a vector q = f(q) in the embedded
space. Next, the query R{q^ r) is evaluated in the vector space and a result-set
is obtained. However, this result contains some objects which do not qualify
for the original query and we must filter out these false positives in the original
space.

8.3.1 Embedding Examples

Lipschitz Embedding. A Lipschitz embedding is defined in terms of a set
S of subsets of X, S = {^i, 52,..., 5'/^}. The subsets Si are termed the ref-
erence sets of the embedding. Let d{o^ Si) be an extension of the distance
function d to a subset Si C X, such that d{o^Si) — mmxeSi{d{o^x)}. An
embedding with respect to S is defined as a mapping / such that f{o) =
(d(o, S î), (i(o, 52) , . . . , d(o, Sk))' In other words, what we are doing is defining
a coordinate space where each axis corresponds to a subset Si of the objects and
the coordinate values of object o are the distances from o to the closest element
in each Si. Under this definition, the embedding is not suitable for similarity
search due to its large computational cost. Thus, a method called SparseMap
proposed in [Hjaltason and Samet, 2003b] applied a heuristics aimed at reducing
the cost of producing this embedding.

Karhunen-Loeve transform. The Karhunen-Loeve transform (KLT) [Fuku-
naga, 1990] is a linear transformation that allows coordinate axes to be deter-
mined in such a way as to retain as much distance information as possible. It
is essentially equivalent to Principal Component Analysis (PCA) [Dunteman,

40 SIMILARITY SEARCH

1989]. In particular, for a database X of points in an n-dimensional Euclidean
space, KLT identifies a new set of n coordinate axes, represented by an or-
thonormal set V = {^, ^"2,..., ^n} of basis vectors (i.e., each basis vector has
a length of one and any two basis vectors are orthogonal). The set V is chosen
such that the spread of points in X along an axis (represented by a vector from
V) is maximal.

The transformation function fk{o) for an object o E X is then defined as the
projection of the point o onto the first k basis vectors in V. It can be proven
that dk{fk{oi)j //c(ö2)) will preserve the distances as much as possible, in a
mean-square sense, if d^ denotes the Euclidean distance in the transformed
fc-dimensional Euclidean space. In other words, KLT results in the transfor-
mation that minimizes Eoi,02€X (4 (/ /C (ÖI) , fk{o2)) - d{oi,02)f. Inspired
by this embedding, a FastMap method for similarity searching was defined
in [Faloutsos and Lin, 1995].

MetricMap. The previous two examples define an embedding applicable only
on vector spaces. The MetricMap [Wang et al., 2000] is a technique which em-
beds a generic metric space M — (I>, d) into a fc-dimensional vector space.
First, the metric space is transformed into an "imaginary" space using a subset
P dV of size m, P = {pi,P2, • • • jPm}^ where m > k. The authors suggest
setting m = 2k for best results. In the projected space, every object o e V is
identified using a vector ^(o) = ((i(pi, o), d{p2j o) , . . . , d{pm^ o)). This imag-
inary space has a basis (^ (p i) , . . . , "^(pm))- As with the KLT technique, this
basis is transformed to an orthonormal vector basis. The final /c-dimensional
space is then formed using first k dimensions of the imaginary space. Further re-
finements and a detailed explanation of properties of the MetricMap embedding
can be found in [Hjaltason and Samet, 2003b].

8.3.2 Reducing Dimensionality

The embedding of metric space into vector space also offers the possibility of
using other standard multidimensional vector space index structures, such as the
Ä*-tree [Beckmann et al., 1990] or Ä^-tree [White and Jain, 1996]. However,
as dimensionality increases, query performance in index structures degrades.
Moreover, some embedding techniques may result in a very high-dimensional
embedding space. Both problems may be solved for specific cases by reducing
the dimensionality of the vector space.

Such dimensionality reduction techniques assume that a few dimensions
are sufficient to retain the salient information about the data objects repre-
sented, allowing other dimensions to simply be ignored. Typically, linear-
algebraic methods such as the Karhunen-Loeve Transformation [Fukunaga,
1990], Discrete Fourier Transform [Oppenheim et al., 1999], Discrete Cosine
Transform [Kailath, 1985], Discrete Wavelet Transform [Castelman, 1996] or

Foundations of metric space searching 41

Singular Value Decomposition [Wall et al., 2003] are used to transform the
original vectors into a new vector space where the distances are conveniently
retained.

From a metric-space perspective (since any vector space is a subspecies of
metric space), we can see dimensionality reduction as a means of transforming
the space in such a way that the distance function stays the same while the
domain is changed from a high-dimensional vector space to a lower-dimensional
one. For a more exhaustive explanation see [Carreira-Perpinan, 1997].

9. Approximate Similarity Search
Similarity search in metric spaces is generally expensive and state-of-the art

access methods still do not provide an acceptable response time for highly inter-
active applications. Fortunately, in many applications it is sufficient to perform
an approximate similarity search where an inaccurate result-set is obtained.
The attractiveness of this approach is emphasized by the fact that the approxi-
mate search is typically performed much faster. In the following, we set down
the principles of approximate similarity search, describe generic algorithms to
implement approximate range and the nearest neighbor search strategies, and
finally discuss measures for assessing the performance of approximate simi-
larity search algorithms. Whenever confusion might occur, we use the term
precise or exact similarity search for the non-approximate version.

9.1 Principles
Approximate similarity search techniques offer greatly improved efficiency

vis ä vis precise similarity search, at a price of some imprecision in results. The
general idea of approximation algorithms is to relax some constraints on the
"precise" similarity search to reduce search costs, as measured by disk accesses
and/or the number of distance computations. This obviously means/a/^^ hits
ox false dismissals might occur.

The use of the approximate similarity search is mainly justified by the fol-
lowing observations:

• Similarity between objects is often subjective, thus very difficult to express
by a unique rigorous function. For example, consider an image database.
Given a query image and a set of candidate result images, different persons
would make different choices as to which image is most similar to the
query. But when the intuitive notion of similarity is formally defined by a
mathematical formula (the distance function), subjectivity is not taken into
account. Controlled imprecision which results in a faster similarity search
might be tolerated by users.

• Similarity search processes are intrinsically iterative. Users typically issue
several similarity queries to the search system, possibly reusing previous

42 SIMILARITY SEARCH

query results to express new ones. For instance, a user may start searching
by using an initial image to find similar images. Not being satisfied with
the result, the user may issue another similarity search query using one of
the previously returned images as the reference. With such an approach, an
efficient execution of elementary queries is important and users may accept
some imprecision in the temporary results, provided query execution is fast.

Approaches to approximate similarity search can be broadly classified into
two categories [Ferhatosmanoglu et al., 2001]:

1 Approaches which exploit transformation of the metric space;

2 Approaches which reduce the subset of data to be examined.

In the first category, approximation is achieved by changing the object repre-
sentation and/or distance function with the objective of reducing search cost.
In the second category, strategies are used which omit parts of the dataset not
likely to contain qualifying objects.

Transformation techniques for metric spaces are thoroughly discussed in
Section 8. As a typical example, consider dimensionality reduction in vector
spaces. Good transformations are distance-preserving and satisfy the lower
bounding property: distances in the transformed space are smaller than those
computed in the original space. This implies that superfluous data, i.e., "false
hits", may inhabit the result-set when a similarity search is executed in the
transformed space. These false hits can be easily eliminated in a subsequent
filtering step executed in the original metric space. However, if this second step
is not applied, the search algorithm is approximate: the approximate similarity
search is faster at the cost of false hits in the result.

On the other hand, techniques that reduce the amount of data examined aim at
improving performance by accessing and analyzing less data than is technically
needed. In this book, we focus more on this class of approaches than metric
space transformation techniques, which find their chief use in vector spaces.
There are two basic approximation strategies that employ data reduction:

• Early termination strategies stop the similarity search algorithm before its
natural (precise) end. Similarity search algorithms are iterative processes
in which the current result-set can be improved at each step. The precise
algorithm stops when it detects that no further improvements are possible.
Approximation algorithms, on the other hand, use a stop condition to decide
the early termination of the algorithm. The algorithm terminates when it
detects there is little chance significantly better results will be obtained. Here
the hypothesis is that a good approximation can be had after some initial
steps of the search iteration, while further iterations would only marginally
improve the result-set and consume most of the total search costs.

Foundations of metric space searching 43

Figure 1.17. A relaxed branching strategy might decide not to access regions 7?<i and Tis, which
do not share objects with the query region, even if they overlap the query region.

Relaxed branching strategies avoid accessing data regions that are not likely
to contain objects belonging to the result-set. Precise similarity search al-
gorithms access all data regions overlapping the query region and discard
others. Relaxed branching strategies are based on the definition of an ap-
proximate pruning condition to decide the rejection of regions overlapping
the query region. Data regions are discarded when the condition detects a
low likelihood for objects to occur in the space shared with the query re-
gion. Relaxed branching strategies are particularly useful for access meth-
ods based on a hierarchical decomposition of the space.

Various approximation strategies can be implemented with specific defini-
tions of stop and pruning conditions. Chapter 4 presents some of the most
relevant in detail. To get some flavor of them, a trivial early termination strat-
egy may involve simply stopping the similarity search algorithm after a certain
percentage of the dataset has been accessed, or after a specified time has elapsed.
In either case, some qualifying objects may obviously escape detection. A re-
laxed branching strategy, by contrast, is illustrated in Figure 1.17. The dataset
is divided into three subsets, distinguished by the white, black, and gray points
bounded by regions TZi,TZ2, and 7̂ ,3. In the example, the query region overlaps
all three data regions, so all of them are accessed by the precise similarity search
algorithm. But regions TZi, and TZs share no objects with the query region. A
good relaxed branching technique should detect such situations and decide not
to access these unpromising regions.

44 SIMILARITY SEARCH

Approximate Range Search Algorithm
Input: query region TZ{Q), approximation parameters Xg and Xp.
Output: response set response.

Enter information about an available entry into PR.
response <— 0
while PR 7̂ 0 do

Extract entry N = (G, 7^(G)) from PR.
foreach object entry Oj e G do

itd{q^Oj) < r then
Oj -^ response

enddo
if S'top(response, Xg) then

exit
foreach non-object entry N^ = {G\n{G')) G G do

if ^Prune{n{G'),n{Q),Xp) then
Insert the entry N^ into PR.

enddo
enddo

Figure 1.18. Approximate search algorithm for range queries.

9.2 Generic Algorithms
Algorithms for the approximate similarity search which exploit the early ter-

mination and relaxed branching strategies, can easily be obtained by modifying
the generic similarity search algorithm discussed in Section 6.1. In Figures 1.18
and 1.19, we present pseudocode for the approximate similarity range and the
nearest neighbor search, respectively.

The only difference from the exact versions shown in Section 6.1 is that the
overlap test for regions is replaced by the pruning condition Prune, and the
Stop condition is used to decide premature termination. Note that if the Prune
function is a simple region overlap test and the Stop function is always false,
the algorithms perform the precise similarity search.

The generic stop condition 5top(response, Xg) takes as its arguments the
current result-set response (the set of qualifying objects found up to the cur-
rent iteration) and the approximation parameter Xg- It returns true when the
stop strategy determines the approximation requirements have been satisfied,
respecting the approximation parameter Xg. The argument response is passed
to the stop condition to emphasize the possibility of defining strategies that

Foundations of metric space searching 45

Approximate Nearest neighbor Search Algorithm
Input: query object q, number of neighbors k,

approximation parameters Xg and Xp.
Output: response set response of cardinality k.

Enter information about an available entry into PR.
Fill response with k (random) objects from X.
Adjust TZ{Q) according to the maximum distance in the response

from q designated as r.
Sort entries in PR with decreasing region proximity to TZ{Q).
while PR 7̂ 0 do

Extract the first entry Â = {G, 7^(G)) from PR.
if ^Prune{n{G),n{Q),Xp) then

foreach object entry Oj e G do
if d{q^Oj) < r then

Update the response, r, and TZ{Q) by inserting Oj and
removing the most distant object from q.

Remove all entries N' = (C , T^{G')) from PR
which no longer intersects TZ{Q).

endif
enddo
if iStop(response, Xg) then

exit
foreach non-object entry N' = {G\ n{G')) G G do

if-^Prune{n{G'),n{Q),Xp) then
Insert the entry N' into PR.

enddo
Sort entries in PR with decreasing region proximity to TZ(Q).

endif
enddo

Figure 1.19. Approximate search algorithm for nearest neighbor queries.

analyze the current response set to estimate the quality of the current approxi-
mation.

The generic pruning condition Prune{TZ{G), T^{Q)^ ^p) takes as arguments
the query region TZ{Q), the bounding region TZ{G) of entry N, and the approx-
imation parameter x^. It returns true when the pruning strategy determines
that the entry covered by the data region can be discarded according to the
approximation parameter Xp. It is important to point out that the region 71{G)

46 SIMILARITY SEARCH

is obtained without accessing the entry N itself. Information on the region is
in fact maintained in the already accessed parent entry of N.

The approximation parameters Xg and Xp are used to tune the trade-off be-
tween efficiency and accuracy. Values corresponding to high performance offer
low accuracy, because more qualifying objects may be dismissed. Values that
give very good approximations correspond to more expensive query execution,
because few entry accesses are avoided. Of course, the specific meaning of
these two parameters and their use depend strictly on specific techniques em-
ployed to implement the stop and pruning conditions. Chapter 4 presents some
of these techniques and defines their pruning and stop conditions.

9.3 Measures of Performance
Performance assessments of approximate similarity search algorithms focus

on improvements in the efficiency and accuracy of approximate results. This is
due to the natural tradeoff between the two - high improvements in efficiency
vis ä vis a precise similarity search are typically obtained at the cost of accuracy
in the results. To compare different approximate similarity search algorithms, it
is important to know the relationship between the two measures. Good approx-
imate similarity search algorithms should demonstrate high efficiency, while
still guaranteeing high accuracy of results. In the following, we define one
measure of improvement in efficiency and several possibilities for assessing the
accuracy of approximation. We also discuss the pros and cons of their possible
application.

9.3.1 Improvement in Efficiency

The improvement in efficiency, IE, of an approximate search algorithm with
respect to a precise algorithm is expressed as the cost ratio of the precise to
approximate query execution. Formally, it is defined as

cost{Q)
cost^iQ) '

where cost and cost"^ denote the number of disk accesses for the precise and
approximate execution of the query Q, respectively, which will be either R{q^ r)
or kNN{q). For example, an efficiency improvement of IE == 10 means
approximate execution is ten times faster than precise execution. Search costs
could alternatively be measured by the number of distance computations, but
experiments demonstrate that the two values are strongly correlated.

9.3.2 Precision and Recall

Provided query response sets are not empty, there are two well-known mea-
sures from the field of Information Retrieval that can be used to quantify ap-
proximation quality. Precision measures the ratio of qualifying retrieved objects

Foundations of metric space searching 47

to the total of objects retrieved. Recall compares qualifying objects retrieved
with the total number of qualifying objects which exist. Let S represent the
result-set of a similarity search query and 5 ^ be the result-set returned by the
approximation query. Precision, P , and recall, R, can be formally defined as:

p_\sns^\

and

\s\
Precision and recall are intuitive measures but their interpretation is not

always obvious and may even be misleading. If an approximation algorithm
for range queries has only false dismissals, i.e., it does not contain any false hits,
the expression S"^ C S holds. This implies the precision is always one, so such
a measure gives no useful information. Note that the approximate range search
algorithm presented in Section 9.2 can only have false dismissals. On the other
hand, given the fixed cardinalities of the precise and approximate response sets
in the nearest neighbor queries, the recall and precision measures always return
identical values. In addition, the measures do not consider response sets as
ranked lists, so every element in the result-set is of equal importance. To clarify
the last point, consider the following examples:

Example 1 We search for one nearest neighbor and the approximation algo-
rithm retrieves the second actual nearest neighbor instead of the first one.

Example 2 We search for one nearest neighbor and the approximation algo-
rithm retrieves the 10,000th actual nearest neighbor instead of the first one.

Example 3 We search for ten nearest neighbors and the approximation algo-
rithm only misses the first actual nearest neighbor. Thus, the second actual
nearest neighbor is in the first position, the third in second, etc. The eleventh
nearest neighbor is in position ten.

Example 4 We search for ten nearest neighbors and the approximate algorithm
misses only the tenth actual nearest neighbor. Thus, the first actual nearest
neighbor is in first position, the second in second, etc. The eleventh nearest
neighbor is in position ten.

In Examples 1 and 2, precision and recall evaluate to zero, no matter which ob-
ject is found as the approximate nearest neighbor. However, an approximation
in which the second, rather than the 10,000th, actual nearest neighbor is found
should be rated as preferable. Only one object is skipped in the first case, while
in the second 9,999 better objects are ignored.

48 SIMILARITY SEARCH

0.2
0.18
0.16
0.14

> 0.12
g 0.1
0)

T3 0.08
0.06
0.04
0.02

0

d{o\q) K / 1 r | ^(^^ q)

20 40 60 80 100 120

distance

Figure 1.20. The relative distance error is not a reliable measure of approximation accuracy.
Even though the relative distance error is small, almost all objects are missed by the approximate
search algorithm.

In both Examples 3 and 4, precision and recall are equal to 0.9. However,
the result in Example 4 should be considered a better approximation because
the error appears only in the last position, while in Example 3, the best object is
missing and all other objects are shifted by one position. Observe that objects
can only be shifted in such a way as to place them in better positions. These
inconveniences are tackled in the following.

9.3.3 Relative Error on Distances

Another measurement to asses the quality of approximate nearest neighbor
searches is the relative error on distances, proposed in [Arya et al., 1998]. The
relative error on distances, ED, is defined as

ED
d{o^,q)-d{o^,q) _d{o^,q)

d{o^,q) d{o^,q) - 1 ,

where o"^ is the approximate nearest neighbor and o^ is the actual nearest
neighbor. The relative error on distances measures the quality of approximation
by comparing the distance of the approximate nearest neighbor to that of the
actual nearest neighbor from the query object. This can be easily generalized
to the case of the j-th nearest neighbor as follows:

EDj =
d{of,q)
d{of,q)

1.

The relative error on distances has a drawback in that it does not take into
account the actual distribution of distances in the object domain - see Sec-
tion 10.1.2 for the definition of distance distribution and its usage in similarity

Foundations of metric space searching 49

searching in metric spaces. In the following, we discuss some consequences
such an approach may entail.

The relative error on distances does not give an indication of the number of
objects missed by the approximation algorithm. Specifically, suppose the dis-
tance between the first and the second actual nearest neighbor is large. Further
suppose the approximation algorithm misses the first nearest neighbor o^, and
the first approximate nearest neighbor o^ is actually the second nearest neigh-
bor. In this case the relative error on distances is high even if just one object is
missed. And vice versa - suppose the relative error on distances is small, but
the distance distribution is such that almost all objects have a distance smaller
than o"^. In this case, many objects are missed even if the error is small.

The situation in Figure 1.20 depicts the extreme case in which o^ has a dis-
tance larger than almost all remaining objects, even though still relatively close
in distance to o^ from the query object q. When the distances are distributed in
a very small interval close to the upper bound of possible distances, as shown
in Figure 1.20, the relative error on distances always assumes small values. In
fact, the distance of the object furthest from the query object is not very different
from that of the object nearest to it. Moreover, errors on distances measured in
different datasets cannot be compared. A specific value of the relative error on
distances might have different interpretations in different datasets depending
upon the distribution and range of distances. A particular relative error value
which would be large in the context of one dataset might be negligible in another
with a larger range or lesser density of measured distances.

9.3.4 Position Error

An alternate way of assessing the accuracy of approximate similarity search
algorithms is to measure the discrepancy between the approximate ordered list
and the exact ordered list, as discussed extensively in [Diaconis, 1988, Dwork
et al., 2001, Narasimhalu et al., 1997, Critchlow, 1985]. A measure to assess the
difference between two ordered (ranked) lists is the Sperman footrule distance
(see e.g., [Diaconis, 1988]). Suppose we have two ordered lists Si and S'2
containing all elements of a database X. The correlation between Si and S'2 is
the sum of absolute differences between positions of each element in the two
orderings. Given an ordered list S, we denote the position of the object o in S
by S{o), o e S. The Sperman footrule distance is then given formally by

SFD = J2\Si{oi)-S2{oi)l

This can be normalized by dividing it by the maximum value possible, which
is |X|V2.

50 SIMILARITY SEARCH

Consider a result-set S^ returned by an approximate similarity search query,
ordered with respect to the distance of objects from the query q. Let OX be the
ordered list containing all elements of X, ordered by increasing distance from
q. The previous measure cannot be used to assess the quality of S^ because it
assumes the elements in both sets are identical. In our case, the ordered list S^
is a subset of OX. However, the Sperman footrule distance can be generalized
to deal with partial lists resulting in the so-called induced footrule distance as
follows:

i=l

Observe that the ordering of objects in OX is always preserved in the approx-
imate result 5^ . That is, given of, of e 5 ^ with OX {of) < OX{of), it will
also be true that S'^iof) < S^{of). This is due to the fact that, even though
an approximation algorithm can retrieve a different set of objects, both use the
same distance function. As a consequence, the position of an object in S"^ is
never higher than its position in OX, i.e., S'^{of) < OX{of), so the absolute
value operator can be omitted. In addition, the measure can be normalized by
thefactor|5^|- |X|. We use EP, error on the position, to denote the resulting
measure:

r.p_Tlf=lK0Xi0t)-S^{0f))
\S^\-\X\

Let us evaluate the accuracy of the four examples given in Section 9.3.2 using
EP and suppose the cardinality of the dataset is n = 10,000. In Example 1,
we have EP = {2 - l) /n = 1/10,000 = 0.0001, while in Example 2, we
have EP = (10,000 - l) /n = 9,999/10,000 = 0.9999. Obviously, EP
reflects the trivial fact that the approximation in Example 1 is much better than
in Example 2. In Example 3, EP = 10/(10 • 10,000) = 0.0001, while in
Example 4, EP = 1/(10 • 10,000) = 0.00001. The result-set of Example 4 is
ten times better than that of Example 3.

10. Advanced Issues
The design and implementation of any search structure depends upon a num-

ber of models, theories, and specific feature data, which help in selecting op-
timum strategies for specific data and search requirements. Due to the novel
principles which underlie metric data searching, such tools are also unique. In
this section, we start with a specification of statistics on metric datasets based
exclusively on distances and their distributions. Next, we concentrate on ap-
proaches for measuring the proximity of ball regions, because such regions
typically bound subsets of searched data. We also survey performance predic-

Foundations of metric space searching 51

tion methods, including approaches for estimating the quality of metric data
trees. Finally, we elaborate on strategies for selecting reference objects, called
pivots.

10.1 Statistics on Metric Datasets
The statistical characteristics of datasets have always been important in the

performance optimization of database systems. Statistical information forms
the basis for cost models of query optimizers. It is also used to tune access
structure configurations in the physical database design. Statistical information
employed in commercial systems is typically based on histograms of frequency
values for the records in a database, or, if the data can be represented in a vector
space, on the data distribution.

This type of information, though, cannot be used in generic metric spaces.
Due to the lack of coordinates, the data distribution cannot be determined. Con-
sequently, the statistical information used to characterize metric datasets must
rely exclusively on the distance density and the distance distribution functions.
In the following, we first introduce probabilistic notions of density and distri-
bution functions. Then we discuss how these concepts apply to our scenario.

10.1.1 Distribution and Density Functions

Suppose F is a continuous random variable [Hoel et al., 1971], that is a
real-valued function defined on a probability space, which depends upon an
event occurring with zero probability.

The distribution function Fy of the random variable V is the following
probability:

Fy{v) = ?-r{V <v].

For instance, suppose F is a continuous random variable associated with the
distance between two objects in a metric space. Then Fy{y) is the probability
that two objects exist with distance smaller than v. Note that in a continuous
space the probability that the distance is exactly equal to v is zero.

The density function fy of a random variable y is a function such that

My) = r Mx)dx,
J—oo

Of course, the following always holds
r+oo

fy{x)dx — 1.
/
«/—(If there are two random variables Vi and V2, we talk about tht joint distri-

bution Fy^y2{vi^V2) and the joint density /viy2(^i^ ^2)- The joint distribution
is defined as

Fy^y^{vi,V2) = Pr{Vi < ?;i A ^2 < '̂ 2}

52 SIMILARITY SEARCH

and the joint density fviV2 (^i? ^2) is a function such that

-00 ^ — 0 0

As before, the following equation holds

/

+00 r+00

/ fv^V2{'^l'>^2)dXidX2 ^ 1.

-00 J—00

This can easily be extended to an arbitrary number of random variables.

10.1.2 Distance Distribution and Density

A useful property that characterizes datasets represented in vector spaces is
the data distribution and the corresponding data density. Figure 1.21 shows the
data density function, say fxiX2i^i^^2), in a two dimensional vector space,
where Xi and X2 are continuous random variables corresponding to the coor-
dinates xi and X2 of vectors. In the figure, dark areas correspond to high values
of fxiX2 (̂ 1? ^2)» while light areas correspond to low values. For example, the
data distribution can be used for an arbitrary region of the space to determine the
probability that a random object belongs to this region. Various cost models of
access methods for data represented in vector spaces are based on the data distri-
bution, for example [Berchtold et al., 1997, Faloutsos and Kamel, 1994, Kamel
and Faloutsos, 1993, Papadopulos and Manolopoulos, 1997, Theodoridis and
Sellis, 1996].

In generic metric spaces, data distributions cannot be obtained because an
object does not have an identifiable position and the only quantifiable property
is the distance between objects. [Ciaccia et al., 1998a] have proposed a way of
characterizing metric datasets by using the distance distribution. The distance
distribution with respect to an object p (pivot) indicates the number of objects
whose distance from p does not exceed a certain value or, in probabilistic terms,
determines the probability that a random object has a distance from p smaller
than or maximally equal to a certain value. In other words, the distribution of
distances from p indicates how the other objects in the dataset are distributed
around p. To give an intuitive idea of this statistical information, Figure 1.22
depicts such a situation for a two-dimensional vector space. Note that the
distance density does not provide information on the really "dense" zones of
the space, because an object whose distance from pis x may be placed in any
position on the circumference with center p and radius x.

Formally, the distribution of distances with respect to a given object is defined
as follows:

DEFINITION 1.6 Let Dp be a continuous random variable corresponding to
the distance d{p^ o), where o is a random object. The distance distribution

Foundations of metric space searching 53

xz

Xj

Figure 1.21. Density of data in a two dimensional vector space

.̂

Figure 1.22. Density of distances from the object p

Fop (^) "^ith respect to object p is defined as

Fopix) = PT{Dp <x} = PT{d{p,o) < x}.

D

The distance density fop (x) from the object p can be obtained as the derivative
of the distance distribution FD^{X).

54 SIMILARITY SEARCH

The distribution FD^ is sometimes called the p viewpoint to emphasize the
fact that it gives the distance distribution as seen by p. Given two different
objects Pi^Pj G V, the corresponding viewpoints FD^. and Fo^. are typically
different functions. To simplify notation, in the following we use Fp. to indicate
the distance distribution (or the viewpoint) with respect to the object pi.

The overall distance distribution is a global (unique) property of a metric
dataset. Given a distance x, the overall distance distribution represents the
probability that distances smaller than x exist. In other words, it indicates what
the probability is, given two random objects, that their distance is smaller than x.
Contrary to the viewpoints of individual objects, the overall distance distribution
is a single characterization of the entire dataset. The overall distribution of
distances over V can be formally defined as follows:

DEFINITION 1.7 Let oi and 02 be two independent random objects taken from
V, The overall distance distribution F{x) on V is

F{x) =Pr{d(oi,02) <x}.

D

Obviously, maintaining the overall distance distribution is much easier than
maintaining the individual viewpoint of every object in the dataset. In fact,
a single function is adequate for the updating process, instead of one func-
tion for every object in the database. From a computational point of view, the
overall distance distribution is very difficult to obtain. However, it can easily
be approximated by sampling a sufficient number of pairs of objects from the
available dataset and computing their distances. In the following, we exam-
ine the possibility of substituting individual viewpoints by the overall distance
distribution.

10.1.3 Homogeneity of Viewpoints

In [Ciaccia et al., 1998a], it is shown that the overall distance distribution
can be substituted for the viewpoints, provided the dataset is probabilistically
homogeneous, i.e., that there is no significant discrepancy between the various
viewpoints. Assuming discrete distance functions, the discrepancy between
two viewpoints is formally defined as

5 (F^ , ,F^ .) - avg \F^,{x) - F^.{x)\ ,
a:G[0,d+]

where d'^ is the maximum distance between two objects of the dataset. The
discrepancy between two viewpoints is the average difference of distance distri-
bution values, across all values of x. By analogy, the discrepancy for continuous
distance functions can be defined [Ciaccia et al., 1998a]. Then, the index of

Foundations of metric space searching 55

homogeneity of viewpoints, HV, is defined for the metric space M as

HV{M) = 1- avg S{Fp„Fj„),

where pi andp2 are random objects of D. When HV{M) ^ 1, two viewpoints
are very likely to give the same probability for a given distance. That is, dis-
tances are distributed in almost the same way with respect to an arbitrary object,
and any viewpoint can be chosen in place of any other. In addition, given the
overall distance distribution as the average of all viewpoints, the overall dis-
tance distribution F{x) itself can be used as a representative of any Fp. - the
overall distance distribution F{x) also has characteristics similar to any of the
distributions Fp..

As reported in [Ciaccia et al., 1998a], datasets used in real similarity search
applications are typically highly homogeneous. Therefore in practice, the over-
all distance distribution F{x) can be reliably applied to characterize a metric
dataset.

10.2 Proximity of Ball Regions
There are several data management operations for which it is interesting to

have an estimate of the number of objects in the intersection of ball regions.
For example:

region splitting, where ball regions obtained by splitting a larger region should
share as few objects as possible. Otherwise, queries, which typically follow
the distance distribution of searched datasets, would frequently access both
sets;

disk allocation, where ball regions sharing many objects need to be placed in
consecutive (or nearby) blocks of a disk, because they have a high probability
of being accessed together;

approximate search, where ball regions are only accessed when the chance
of an object appearing in the intersection with the query region exceeds a
certain threshold.

The number of data objects contained in the intersection of two ball regions
depends on the distribution of data objects. Intuitively, there may be regions
with a large intersection and few objects in common, but also regions with a
small intersection and many objects in common, such as happens when the
intersection covers a dense area of data space. The estimated count of objects
actually shared by two ball regions is referred to as tho proximity of ball regions.
In [Amato et al., 2003] this proximity is formally defined as follows:

56 SIMILARITY SEARCH

Triangle inequality:
Dz<D;+D2

Figure 1.23. The overall proximity can be computed as the probability that an object is in the
intersection of two regions of radii n and r2, given that the distance between their centers is z.

DEFINITION 1.8 LetTZi = {pi',^i)jT^2 = {pi','^2) be two ball regions with
centers pi, p2 and radii ri, r2, respectively. The proximity prox{TZi^TZ2) of
ball regions TZi^ TI2 is the probability that a randomly chosen object o over the
same metric space M appears in both regions. That is:

prox{TZi,TZ2) = Pr{d{pi,o) < ri Ad{p2,o) < r2}.

D

To precisely compute proximity according to Definition 1.8, knowledge of
distance distributions with respect to the regions' centers is needed. Since any
object from V can become a region's center, such knowledge is very difficult
to obtain. However, when the dataset is homogeneous (see Section 10.1.3),
we can assume the distribution depends on the distance between the regions'
centers, while remaining (practically) independent of the centers themselves.
This also implies that all pairs of regions with the same radii and constant
distance between centers have on average the same proximity, no matter their
actual centers. Consequently, the proximity prox{TZi^TZ2) can be reliably
estimated by the overall proximity of pairs of regions proXz{ri^r2) having
radii r i and r2, with distance between their centers z. Specifically:

DEFINITION 1.9 Let pi,p2 and o be random objects from V. Let Di.,D2and
Dz be continuous random variables corresponding^ respectively, to distances
dipii o), d{p2^ o), and d(pi^p2). The overall proximity proXz(ri.,r2) of any
two ball regions with radii ri and r2 and distance between centers z is

proXz{ri,r2) = Pr{i?i < ri A i?2 < '̂ 2 I Dz = z}.

D

A graphical representation that helps intuitively understand the definition of
overall proximity in terms of random variables Di, D2, and Dz, is given in

Foundations of metric space searching 57

0.00000025

0.000000225

0.0000002

0.000000175

0.00000015-

0.000000125

0.0000001

0.000000075

0.00000005

0.000000025

0.00000025

0.000000225

0.0000002-

0.000000175

0.00000015-

0.000000125

0.0000001

0.000000075-

0.00000005

0.000000025-

Joint conditional density Joint density

Figure 1.24. Comparison between fDi,D2\Dz (^J vl^) ^^^ /01D2 {x, y), with a fixed z

Figure 1.23. Overall proximity can be computed by using the joint conditional
density fDi,D2\Dzi^^ vl^) ^s follows:

Jo Jo

Unfortunately, no generic analytic expression for fDi,D2\Dzi^^ vl^) ^^ known.
In [Amato et al., 2003], precise heuristics to approximate it using the joint
density fDiD2{^iy) ^^e proposed, analyzed and validated. The heuristics are
based on the observation that, as shown in Figure 1.24, fDi,D2\Dzi^^y\'^) ^^
zero if x, y, and z do not satisfy the triangle inequality, because such distances
in metric spaces simply cannot exist. However, foi 02(^1 y) is not restricted
by such a constraint, and any pair of distances x and y is possible for any z.
Visually it seems the joint conditional density can be obtained by collecting
the values of the joint density outside the bounds of the triangle inequality, and
dragging them to places where they are satisfied. A detailed description of
the heuristics can be found in [Amato et al., 2003, Amato, 2002]. The main
motivation is that the joint density fDiD2 {^1 y) is simple to obtain. In fact, Di
and D2 are independent random variables, so /DID2(^5 y) — fvi (^) • fD2{y)-
Given the definition of the random variables Di and D2, it is also easy to show
that foiix) = / D 2 (^) — /(^)» where f{x) is the overall distance density
(please refer to Section 10.1.2). Therefore, the joint density is fDiD2{^i y) =
f{x)f{y). The computational complexity needed to obtain the proximity using
these heuristics is 0{n), where n is the size of the histogram representing f{x).
In this case, the storage overhead for maintaining such a histogram is entirely
acceptable even for large values of n.

5 8 SIMILARITY SEARCH

10.3 Performance Prediction
The problem of estimating CPU costs (mainly incurred by distance compu-

tations) and the I/O costs for processing range and nearest neighbor queries on
distance data has been studied in [Ciaccia et al., 1998a]. Unlike the specific
case of vector spaces, where information on data distribution can be exploited
for predicting the performance of multi-dimensional access methods, no such
possibility exists in generic metric spaces. This makes for a different problem
that demands a novel approach.

Suppose we have a dataset partitioned into m subsets bounded by ball regions
T^i{pi')'^i)^ I < i < m. Given a range query R{q^rq), the content of the i-ih
subset is accessed by the query if the corresponding ball region TZi intersects
the query region, i.e., if d{q^pi) < u + Vq. Let TV — (p, r) be a ball region
with random center p and radius r, bounding a subset. The probability of a
decision to access the subset as R{q^ Vq) is processed can be estimated as:

?r{d{q,p) <r + rq} = Fq{r + Vq) ^ F{r + Vq).

This is clearly true if the homogeneity of viewpoints in the dataset is high.
Suppose that for each subset we know the radius ri of the corresponding

bounding ball region. We are now able to estimate the expected number of
accessed subsets for a range query by summing the probabilities of accessing
each of them as follows:

m

suhsets{R{q,rq)) ^ ^F(ri + rq). (1.1)

Note that this does not take into account the cost of locating the position of a
subset in the disk, which depends on the specific data structure used to organize
the subsets. For example, in the case of a hierarchical organization of ball
regions as exemplified in Section 6.1, the cost of locating subsets is already
included in the cost of accessing the parent subset.

As stated in Section 3, the evaluation of the distance between two objects can
be expensive. Accordingly, the possibility of estimating the number of distance
computations needed to execute a range query is very important. This can be
obtained as

m

distances{R{q^rq)) ^ 2_] \^i\F{ri + r^),
i=l

where 1??.̂ | is the number of objects contained in the subset bounded by the ball
region TZi. In fact, unless specific techniques are used to reduce the number of
distance computations (see Section 7) , distances must be evaluated from the
query object to all objects of the accessed subsets.

Foundations of metric space searching 59

Finally, the following formula estimates the expected number of retrieved
objects as

objects{R{q,rq)) ^ nF{rq),

where n is the total number of objects in the dataset.
The expected execution cost of a nearest neighbor query is more complex to

determine. Suppose a query kNN{q) returning o/. as the fc-th nearest neighbor.
The optimal nearest neighbor search algorithm, as discussed in Section 6.1,
accesses just those regions intersecting the query ball region TZ{q,d{q^Ok)).
Therefore, the costs of the kNN{q) query are the same as the costs of the
range query R{q^ d{q^ o/.)). Unfortunately, the object oj^ and consequently the
distance d(q^ Ok) are not known a priori. A way to solve this problem is to use
the distance density of the /c-th nearest neighbor as follows: Let DNNq^k be the
continuous random variable corresponding to the distance of the fc-th nearest
neighbor from the query object q and let foNNq^k ^^ the corresponding density
function.

According to [Ciaccia et al., 1998a], the density function foNNq^k ^^^ be
obtained first by computing the distribution of DNNq^k as follows:

FvNNq^ki^) = ?T{DNNq^k<x}

= E I L . ("^) Md{q. o) < xyPr{d{q^ o) > x}-^

?r{d{q, a) < xy?r{d{q, a) > x}""-'

F{xy{l-F{x))''-\

Notice that a denotes a random object. Then the density can be obtained as the
derivative:

fDNN^^) = E (r) nxy-'f{x){i - F{x)r-'-\nF{x) - i).

Now, the number of subsets accessed by a nearest neighbor search is obtained by
integrating Equation 1.1 over the entire range of possible distances multiplied
by the density of the distance to the /c-th nearest neighbor:

subsets{kNN{q)) ^ / suhsets{R{q^r))fDNNqk{^)dr,
Jo

By analogy, the number of distance computations is given by the following
formula:

distances{kNN{q)) ^ / distances{R{q^r))fDNNqk{'f^)dr.
Jo

60 SIMILARITY SEARCH

In order to compute these cost prediction functions, statistics related to all
subsets of the partitioned dataset should be kept. Since the number of subsets
typically increases linearly with the size of the dataset, the amount of informa-
tion can become unacceptable. Depending on the specific data organization,
the statistical information can be reduced while still maintaining a high degree
of reliability for results. For example, consider a tree-based organization of
ball regions as outlined in Section 7.1. In this case, we can maintain statistical
information for each level instead of for each subset. Specifically, for each level
/ we store only the number of subsets M/ and the average covering radius ri
of ball regions at this level. The cost function for range queries can now be
modified as follows:

subsets{R{q, Tq)) ̂ ^ MiF{fi + Vq)

and

/ = i

distances{R{q, Vq)) ^ ^ Mi^iF{ri + Vq),

where L is the number of tree levels, and M^^i is the total number of objects
in the dataset. The level-based cost function for nearest neighbor queries can
be obtained analogously.

In [Ciaccia et al., 1999], this approach was extended to deal with datasets
where the homogeneity hypothesis is not satisfied. The extension consists
in maintaining several distance distributions with respect to different objects
called witnesses. Special algorithms are proposed to choose witnesses and de-
cide which distribution to use for a specific query. An extension of this approach
is also proposed in [Amato et al., 2003] to derive a cost model for approximate
range search queries in metric spaces. Another approach to performance pre-
diction has been proposed by [Traina, Jr. et al., 1999, Traina, Jr. et al., 2000a].

10.4 Tree Quality IMeasures
As we will see in Chapter 2, many index structures for metric spaces are

trees. For the moment, we can consider the hypothetical metric tree defined in
Section 7.1. Given a tree, we would like to know whether the tree structure built
over a dataset can be improved or not. We might also be interested in comparing
two different trees to decide which of them is more efficient or optimal. Methods
for such estimates are often based on a definition of the overlap between ball
metric regions which cover individual nodes of the tree.

When analyzing the theoretical search costs of a metric tree structure in
terms of the number of distance computations or the number of I/O operations,
it is typically assumed that the tree is "good" [Faloutsos and Kamel, 1994].

Foundations of metric space searching 61

However, in real situations, this is not necessarily true. The problem, nicely
formulated by [Traina, Jr. et al., 2000b], is as follows:

Given n objects organized in a metric tree structure, how can we express
its 'goodness' or 'fitness' with a single number?

To this aim, [Traina, Jr. et al., 2002] propose another concept of computing
the overlap between two metric regions, based again on the number of objects
covered by both regions. Specifically, the authors define a measure as follows:
the overlap of two ball regions TZi and TZ2 is the number of objects in the
corresponding subsets which are covered by both regions, divided by the total
number of objects in these subsets. Notice that the quantified overlap is a real
number between zero and one. Also observe the difference from the measure
discussed in Section 10.2, where the overlap is related to the total number of
objects in the dataset.

The measure of "goodness" of a metric tree is strictly related to the defini-
tion of the overlap. The authors claim a good tree has very little and ideally
no overlap between metric regions of individual nodes. The definition of the
absolute fat-factor follows this strategy.

DEFINITION 1.10 Let T be a metric tree with height h and m > 1 nodes
which organize n objects. The absolute fat-factor ofT is

n {m — h) ^

where Ic denotes the total number of node accesses required to answer point
queries for all n objects stored in the metric tree. •

The ideal metric tree requires accessing exactly one node per level and yields an
absolute fat-factor of zero. By contrast, the worst tree visits all nodes regardless
what point query is issued and the absolute fat-factor is equal to one. Using
these two boundary examples, we can state the lower and upper limits on the
value of Ic, i.e., the total number of accessed nodes for all n point queries.
Accordingly, the lower bound is hn and the upper bound mn.
The absolute fat-factor is based on the following two assumptions:

• only range queries are taken into account; this is not very restrictive since a
nearest neighbor query can be viewed as a special case of the range query;

• the distribution of point queries follows the distribution of data objects; in
general, this is quite reasonable because we expect that queries are most
likely to be issued in dense regions of the metric space.

To aid in understanding the absolute fat-factor, we provide the reader with
an example of two trees organizing the same dataset (see Figure 1.25). The

62 SIMILARITY SEARCH

(a) (b)

Figure 1.25. An example of two tree structures with different absolute fat-factors: (a) fat{T) =
0.2, and (b) fat{T) = 0.0.

connecting lines are drawn only to emphasize the relationships of objects with
their corresponding representatives. Both trees organize the same five objects
and consist of two levels and three nodes, i.e., n = 5, /i = 2 and m =
3, respectively. By issuing five point queries, we get Ic = H for the tree
in Figure 1.25a. In this case, the absolute fat-factor is 0.2. For the tree in
Figure 1.25b, Ic — 10, and the absolute fat-factor is zero.

The notion of absolute fat-factor concentrates exclusively on the ratio of
objects lying in overlapping regions. The main disadvantage to this approach
is that it does not consider the number of nodes in trees, so a big tree with a low
fat-factor is always better than a small tree with the fat-factor a bit higher. The
relative fat-factor by [Traina, Jr. et al., 2002] assigns penalties to trees that use
more than the minimum number of nodes. Such an approach does not consider
the height and number of nodes of the actual tree, instead uses the respective
characteristics of the minimum tree. Formally, the relative fat-factor is defined
as follows.

DEFINITION 1.11 Let The a metric tree with more than one node organizing
n data objects. The relative fat-factor ofT is

rfat[T) = -

where the minimum height is hmin = R^Sc^l ^^^ ^̂ ^ minimum number
of nodes is rrimin = J2i=i^\'^/^^]' ^^^^ ^ representing the node capacity
expressed as the number of objects. •

The value of the relative fat-factor may vary from zero to a positive number that
can be greater than one.

In summary, the absolute fat-factor measures how satisfactory a tree is with
respect to the number of objects in overlaps of regions on the same level, dis-
regarding any possible waste of disk space due to under-occupied nodes. The

Foundations of metric space searching

1

63

0 1

Figure 1.26. Different choices for pivot p to divide the unit square.

relative fat-factor extends this conception to compare trees with respect to both
overlaps and the efficient occupation of nodes.

10.5 Choosing Reference Points
The problem of choosing reference objects (pivots) is important for any

metric search technique, because all such structures need, directly or indirectly,
"anchors" for partitioning and search pruning (see Sections 5 and 7.6). It is well-
known that a specific selection of pivots can affect the performance of search
algorithms. This has been recognized and demonstrated by several researchers,
e.g. [Yianilos, 1993, Bozkaya and Özsoyoglu, 1999, Shapiro, 1977]. Roughly
speaking, the higher and more narrowly-focused the distance density is with
respect to a pivot, the greater the chance a query object will be located at the
most frequent distance from that pivot. For example, if the distance dm of a
ball partitioning is the most frequent, and if all other distances are not very
different, both resulting subsets are likely to be accessed for any given query,
a very undesirable situation. Due to the complexity of the problem, pivots are
often chosen at random. Obviously, random choice is the most trivial technique
and does nothing to optimize pivot selection. Perhaps it is surprising, then, that
many implementations use this approach with reasonable success.

For Euclidean spaces, [Yianilos, 1993] explains why some elements of the
space may be better pivots than the others. To illustrate, consider Figure 1.26,
which presents a unit square with uniform data distribution. To divide the space
using ball partitioning, we have to pick a pivot and conveniently set the radius
dm- There are three natural choices for pivots: the midpoint prn^ the midpoint
of an edge pe^ and a comer point pc> To choose among these possibilities, note
that the probability of entering both regions is proportional to the length of the
partitioning boundary in the square. Thus, we aim at minimizing the boundary
length. From this perspective, the most promising choice is the comer point pc,
with the object pe as second choice since it is still better than the central point

64 SIMILARITY SEARCH

Frequency

1,000

800

600

400

200

Corner point
Middle point

0.5 1.5 2 2.5

Distance

3.5

Figure 1.27. Distance densities for two pivots. One is the center while the other is a comer
object, in the unit cube of a 20-dimensional EucUdean space.

Prn- It is interesting that from a clustering point of view, prn is the center of a
cluster but, as we have shown, it is the worst possible choice for partitioning.
This observation can even be generalized by saying that a good pivot should
be an outlier, that is an object located far away from the others, or one lying
near the boundary of the space. Because of the generic metric, however, it's
not always possible to define such an object.

The heuristics that selects pivots from comers of the space can be used in
applications where we have some idea of the geometry of the space, which is
not often true in metric spaces. In [Bozkaya and Özsoyoglu, 1999], a different
reason is given why comer pivots may be better than the others, i.e., why they
provide better partitioning. Succinctly, the distance density for a comer point
is flatter than the density for a central point. Figure 1.27 illustrates this for
uniformly distributed points in a 20-dimensional Euclidean data space. As we
can easily see, the distance density with respect to the central object is sharper
and thinner. Setting the ball-partitioning radius to the peak value leads to a
higher concentration of objects near the boundary and, as a consequence, a
higher probability of visiting both regions. This does not apply, by contrast, to
the comer point because the distance density is much flatter. Thus the search
would involve more trimming. A simple heuristics which tries to respect these
observations is as follows:

• choose a random object,

• compute distances from this object to all others,

• select the furthest object as pivot.

This simple procedure cannot guarantee choosing the best possible pivot but
it can help choose a better pivot than would be got randomly. The authors

Foundations of metric space searching 65

have verified this by experiment, with performance gains due to the heuristics
varying between 5% and 10%.

When several reference points are used for partitioning, the problem gets
even more complicated. Intuitively, they should be fairly far apart, but the
problem of finding k furthest objects is very time-consuming. An approach
suggested in [Brin, 1995] works as follows: Given a set of n points from which
m > 1 objects are to be chosen as pivots, we choose 3m objects at random
to form a candidate set - the number three is an empirical suggestion by the
author. From this candidate set, an object is picked and the furthest candidate
object from this one is selected as the first pivot. Next, another candidate
object furthest from the first pivot is promoted to the second pivot. Up to this
point, the algorithm follows the approach previously proposed in [Bozkaya
and Özsoyoglu, 1999]. The succeeding pivot is picked as the furthest object
from the previous two pivots. By furthest, we mean that the minimum of
distances is maximized. Specifically, the third pivot is such a candidate object
whose minimum of distances to the previous pivots is maximal. The procedure
described is repeated until all m pivots are found. A simple dynamic algorithm
can do this in 0(3m • m) time. For small values of m, the process can be
repeated several times with a different initial set of (random) candidate points,
and the best setting of reference points is used.

Recently, the problem has been systematically studied in [Bustos et al., 2001],
where several strategies for selecting pivots were proposed and tested. The
authors suggest an efficiency criterion that compares two sets of pivots and
designates the better of the two. It uses the mean distance between every pair
of objects in V, denoted by IJLV Given two sets of pivots Pi = {pi^P2^-- - jPt}
and P2 = {PIJP2J . . . , p'J we call Pi better than P2 if

However, the problem is how to find the mean for a given set P of pivots. An
estimate of such a quantity is computed as follows:

• at random, choose / pairs of objects {(01,0'^), (02,02),..., (o/, oj)} from
the given database X CD;

• all pairs are mapped into the feature space associated with the set of pivots
P using the mapping function ^(•) (refer to Section 7.6);

• for every pair (o ,̂ o^, compute the distance between Oi and ô in the feature
space, that is, di = Loo(*(oi), ^ (o^) ;

• compute fxx>p as the mean of these distances, i.e., ßx>p = j J2i<i<i ̂ i-

As the most suitable strategy for real world metric spaces, the authors propose
incremental selection. The advantage of this algorithm is that it is capable of

66 SIMILARITY SEARCH

selecting pivots incrementally, depending on the need for new pivots. The
strategy works as follows: First choose a set Pi = {pi} of one element from
a sample of m database objects, such that the pivot pi has the maximum fi^p^
value. Then choose a second pivot p2 from another sample of m objects of
the database, creating a new set P2 — {pi, P2} for fixed pi, maximizing ij.x>p^.
The third pivot ps is chosen by analogy, creating another set P3 — {pi, P2,Ps}
for fixed pi,P2» maximizing /j.x>p . This process is repeated until the desired
number of pivots is determined. If all distances needed to estimate fxj^p are
retained, only 2ml distances must be computed to estimate the new value of
IJ.T) whenever a new pivot is being added. The total cost for selecting k pivots
is 2lmk distance evaluations.

The efficiency criterion presented above also tries to select pivots far away
from each other. However, the key difference between this approach and the
previous technique is that the criterion maximizes the mean of distances in
the projected space and not in the original metric space. Specifically, it tries
to spread the projected objects as much as possible according to the selected
pivots. Note that these two procedures do not always go together.

Rough guidelines from current experience can be summarized as follows:

• good pivots should be/ar away from other objects in the metric space,

• good pivots should be/ar away from each other.

Finally, we would like to point out the dark side of the strategy of selecting
pivots as outliers. Such an approach will not necessarily work in all possible
situations. Consider a metric space with sets as data objects and the Jaccard's
coefficient (see Section 3.5) as the distance measure. The outlier principle
would select a pivot which is far away from the other objects. In the limit
case, the selected pivot p would be completely different from the other objects,
resulting in distance d{p, o) =^ 1 for any o in the database. Such an anchor is
useless from the partitioning point of view, leaving the search unable to filter
any single object.

Chapter 2

SURVEY OF EXISTING APPROACHES

In this chapter, we give an overview of existing indexes for metric spaces.
Other relevant surveys on indexing techniques in metric spaces can be found
in [Chavez et al., 2001b] or [Hjaltason and Samet, 2003a]. In the interests of
a systematic presentation, we have divided the individual techniques into four
groups. In addition we also present some techniques for approximate similar-
ity search. Specifically, techniques which make use of ball partitioning will
be found in Section 1, while Section 2 describes indexing approaches based
on generalized hyperplane partitioning. A significant group of indexing meth-
ods computes distances to characteristic objects and then uses these results to
organize the data. Such methods are reported in Section 3. In order to maxi-
mize performance, many approaches synergically combine several of the basic
principles into a single index. The most important of these hybrid approaches
are reported in Section 4. Finally, Section 5 treats the important topic of ap-
proximate similarity search, which trades some precision in search results for
significant improvements in performance.

1. Ball Partitioning IMethods

The advantage of ball partitioning is that it requires only one pivot and,
provided the median distance dm is known, the resulting subsets contain the
same amount of data. Such a simple concept has naturally attracted a lot of
attention and resulted in numerous indexing approaches being defined. In the
following, we survey the most important of them. The first three structures
assume discrete metric functions with a relatively small domain of values. The
other methods can also be applied for continuous functions.

68 SIMILARITY SEARCH

1.1 Burkhard-Keller Tree
Probably the first solution to support searching in metric spaces was that

presented in [Burkhard and Keller, 1973]. It is called the Burkhard-Keller Tree,
BKT. The tree assumes a discrete distance function and is built recursively in
the following manner: From an indexed dataset X, an arbitrary object p £ X
is selected as the root node of the tree. For each distance i > 0, subsets
Xi = {o e X, d{o^p) — i} are defined as groups of all objects at distance i
from the root p. A child node of root p is built for every non-empty set Xi.
All child nodes can be recursively repartitioned until it is no longer possible to
create a new child node. When a child node is being divided, some object Oj
from the set Xi is chosen as a representative of the set. A leaf node is created for
every set Xi provided Xi is not repartitioned again. A set Xi is no longer split
if it contains only a single object. Objects chosen as roots of subtrees (stored
in internal nodes) are called pivots.

The algorithm for range queries is simple. The range search for query R{q^r)
starts at the root node of the tree and it compares its object p with the query
object q. If p satisfies the query, that is if d(p, q) < r, the object p is returned.
Subsequently, the algorithm enters all child nodes Oi such that

max{d{q^p) — r^Gi] <i < d{q^p) + r (2.1)

and proceeds recursively downward. Observe that Equation 2.1 cuts out some
branches of the tree. The inequality is a direct consequence of the lower bounds
provided by Lemma 1.2 (pg. 31). In particular, by applying the lemma with
ri = i and r^ — i, we find that the distance from q to an object o in the inspected
tree branch is at least max{d{q^ p) — i^i — d{q^ i^), 0}. Thus, we visit the branch
i if and only if max{d{q^p) — i^i — d{q^p)^0} < r.

Figure 2.1b shows an example where the BKT is constructed from objects
of the space illustrated in Figure 2.1a. Objects p, oi, and 04 are selected as
roots of subtrees, so-called pivots. The range query is given by the object
q and radius r = 2. The search algorithm discards some branches and the
accessed branches are emphasized in the figure. Obviously, if the radius of
range query grows the number of accessed subtrees (branches) increases. This
leads to higher search costs, which are usually measured in terms of the number
of distance computations. During the range query evaluation, the algorithm
traverses the tree and determines distances to pivots in internal nodes. Thus, the
increasing number of accessed subtrees leads to a growing number of distance
computations because pivots in individual nodes are different.

BKTs are linear in space 0{n) and the construction complexity measured
in terms of the number of distance computations is O(nlogn). Search time
complexity, also measured in terms of distance computations, is O(n^), where
a is a real number satisfying 0 < a < 1 which depends on the search radius
and the structure of the tree, see [Chavez et al., 2001b].

Survey of existing approaches 69

. ' O ,

?0-'.

: op

^q j-^/X-K

G.

(a)

BKT

(b)

Figure 2.1. (a) An example of a metric space and a range query, (b) BKT built over the sample
space.

1,2 Fixed Queries Tree
The Fixed Queries Tree, FQT, originally presented in [Baeza-Yates et al.,

1994], is a modification of the BKT. In contrast to BKTs, where pivots on
individual levels are different. Fixed Queries Trees use a single pivot for all
nodes at the same level (see Figures 2.1b and 2.2a). All objects in a given
dataset X are stored in leaves and internal nodes are used for navigation during
the search (or insertion). The range search algorithm is the same as for the BKT.
The advantage of this structure is a reduced number of distance computations,
because even if more than one subtree has to be accessed to evaluate a query,
only one distance computation between the query object and a specific pivot
per level is computed. The experiments presented in [Baeza-Yates et al., 1994]
confirm that FQTs need fewer distance computations than BKTs.

Figure 2.2a shows an example of an FQT built over the data of Figure 2.1a
with objects p and 04 as pivots on corresponding levels. Observe that all objects
are stored in leaves, including the objects selected as pivots. The branches
highlighted represent the process that evaluates the query R{q^ 2).

The space complexity is superlinear because the objects selected as pivots
are duplicated, so the complexity varies from 0{n) to ö{n log n). The number
of distance computations required to build the tree is 0{n log n). The search
complexity is 0{n^), where a in the range 0 < a < 1 depends on the query
radius and the object distribution in the metric space.

A variant of the FQT, called the Fixed-Height Fixed Queries Tree, FHFQT,
is proposed in [Baeza-Yates et al., 1994, Baeza-Yates, 1997]. This structure has
all its leaf nodes at the same level, i.e., leaves are at the same depth h. In other
words, shorter paths are extended by additional paths. The enlargement of the

70

^

7

o2

^^<^^T^s>^

o3

\ y^
ol o4 o5

FQT

(a)

-<•

o7

ŝ
06

• P

• o4 ^

4 /
p o2

SIMILARITY SEARCH

^̂ 't'̂ ^ " "
V 1 /K 1
\ 6 4| 0 ^ V 5

ol o3 o4 o5 06 o7

FHFQT

(b)

Figure 2.2. Examples of (a) FQT and (b) FHFQT built over objects of the data space depicted
in Figure 2.1a.

tree can actually improve search performance, because the search process in
the extended paths can be stopped before reaching the leaf. Note the distance
computation to pivots for the extended paths does not typically imply extra
costs, because such distances are computed due to the search needs of other
(non-extended) paths. If we increase the height of the tree by thirty, we only
add thirty more distance computations for the entire similarity search. We
may introduce many new node traversals, but these are very cheap operations.
However, thirty pivots filter out many objects, so the final candidate set is much
smaller. This approach to filtering is explained in Section 7.6 of Chapter 1. For
convenience, see Figure 2.2b where an example of the FHFQT is provided.

The space complexity of the FHFQT is superlinear and lies somewhere be-
tween 0{n) and 0{nh), where h is the height of the tree. The FHFQT is
constructed with 0{nh) distance computations. Search complexity is claimed
to be constant 0{h), that is the number of distance evaluations computed to h
pivots. The extra CPU time is proportional to the number of traversed nodes
and remains 0{n^), where 0 < a < 1 depends upon the query radius and the
indexed space. The extra CPU time is spent on comparing distance values (in-
tegers) and in traversing the tree. In practice, the optimal tree height h = \ogn
cannot always be achieved due to the space limitations.

1.3 Fixed Queries Array
The Fixed Queries Array, FQA, is presented in [Chavez et al., 2001a, Chavez

et al., 1999b]. Though the structure of FQA is strongly related to the FHFQT,
it is not a tree structure. First, the FHFQT with height h is built on a given
dataset X. If the root-to-leaf paths of the FHFQT are traversed in order from
left to right and placed in an array, the result is the FQA. Each column consists
of h numbers representing distances to every pivot utilized in the FHFQT. In
fact, the sequence of h numbers is the path from the root of FHFQT to its leaf.
The FQA structure simply stores the database objects lexicographically sorted

Survey of existing approaches 71

/
/
/

p o2

\
\ 6 4

/
V3

\ N
-<••-

5
\ 1 / 1 \ 1

ol o3 o4 o5 o6 o7

FHFQT

(a)

••• o 4 p o2 ol o3 o4 o5 o6 o7

0 2 2 3 4 4 4 5 -*=•••

4 3 6 4 0 3 7 5 -*:•••

FQA

(b)

... p

... o4

Figure 2.3. (a) An example of the FHFQT tree, (b) FQA built from the FHFQT.

by this sequence of distances. Specifically, the objects are initially sorted with
respect to the first pivot and those at the same distance are sorted with respect to
the second pivot and so on. For illustration, Figure 2.3b shows the FQA array
constructed from the FHFQT in Figure 2.3a.

The range search algorithm is inherited from the FHFQT. Each internal node
of the FHFQT corresponds to a range of elements in the FQA. Child nodes
have a range of elements which is a subrange of their parents' range in the
array. Naturally, there is a similarity between the FQA approach, the suffix
trees, and the suffix arrays [Frakes and Baeza-Yates, 1992]. Navigation in the
tree algorithm of the FHFQT is simulated by the binary search through the new
range inside the current one.

The FQA is able to use more pivots than the FHFQT, which improves effi-
ciency and search pruning. The authors of [Chavez et al., 2001a] show that the
FQA outperforms the FHFQT. The space requirements are n • /i • 6 bits, where
h is the number of bits used to store one distance. The number of distance
computations evaluated during the search is 0{h). As proved in [Baeza-Yates
and Navarro, 1998], the extra CPU complexity of the FHFQT is O(n^). The
FQA has 0{n^\ogn) extra complexity, where 0 < a < 1. The extra CPU
time is due to the binary search of the array.

All the search structures presented above (BKT, FQT, FHFQT, and FQA)
were designed for discrete metric functions, since a separate child is needed
for any specific distance value. If we apply them to the continuous case, the
tree degenerates to a flat tree of height one, and the search algorithm in effect
performs a sequential scan.

In order to properly transform the continuous case to the discrete, we must
segment the domain of potential distance values into a small set of subranges.
Two discretizing schemata for the FQA have been proposed in [Chavez et al.,
1999b, Chavez et al., 2001a]. The former divides the range of possible values
into slices of identical width, the result being labeled a Fixed Slices Fixed

72 SIMILARITY SEARCH

(a) (b)

Figure 2.4. Examples of range queries: (a) So is not accessed, (b) both subsets must be visited.

Queries Array. Such partitioning may lead to empty slices where no database
object is accommodated. This, then, has motivated a more recent approach in
which the entire range is divided into slices, each containing the same number
of database objects. In other words, the domain is divided into fixed quantiles.
The resulting FQA is called the Fixed Quantiles Fixed Queries Array.

lA Vantage Point Tree
The Vantage Point Tree (VPT) [Yianilos, 1993] is expressly designed for

continuous distance functions, but discrete distance functions are also supported
with virtually no modifications. It is based on the ball partitioning principle
described in Section 5 of Chapter 1, which divides a set S into subsets ^i and
S'2 based upon a chosen object p called a vantage point or pivot, and the median
distance dm from p to the objects in S. Starting with the whole set of objects X
and recursively applying this partitioning procedure leads to a balanced binary
tree. Applying the median to divide a dataset into two subsets can be replaced
by a strategy which instead employs the mean of distances from p to all objects
in X \ {p}. This method, called the middle point in [Chavez et al., 2001b], may
yield better performance for high-dimensional vector data. A disadvantage of
the middle point strategy is that it may produce an unbalanced tree, impacting
negatively on search algorithm efficiency.

The search algorithm for a range query i?(g, r) traverses the VPT from root
to leaves. For each internal node, it evaluates the distance d{q^ p) between the
pivot p and the query object q. If d{q^ p) < r, the pivot p is reported to output.
For internal nodes, the algorithm must also decide which subtrees to access.
Doing so requires establishing lower bounds on the distances from q to objects
in the left and right subtrees. If the query radius r is less than the lower bound,
the algorithm does not visit the corresponding subtree. Figure 2.4a provides
an example of a situation in which the inner ball region need not be accessed,
whereas Figure 2.4b shows an example in which both subtrees must be checked.
The lower bounds are established using Lemma 1.2 (pg. 31). More precisely,
applying the equation and setting vi — Q and rh = dm, we have that the distance

Survey of existing approaches 73

(a) (b)

Figure 2.5. An example of VPT with two pivots pi and p2'. (a) the 2-D overview and (b) the
corresponding tree representation.

from q to any object in the left branch is at least max{d{q^ p)—dm^O}. Likewise,
setting ri = dm and r/j, = oo we get that the distance from q to an object in the
right subtree is at least max{dm — d{q^ p), 0}. Thus, we enter the left branch if
max{d{q^p) — dm^ 0} < r and the right branch if max{dm — d{q^p)^0} < r.
Note both subtrees can be visited simultaneously.

The ball partitioning principle applied in VPTs does not guarantee that the
ball region around pivot p2 will be completely inside the ball region around
pivot pi, which is the parent ofp2- For convenience, see Figure 2.5 where the
situation is depicted for a query object q. In general, it is possible that the lower
bound from q to a. child node is smaller than the lower bound from q to the
child's parent node, that is

max{d{q,p2) - dm2,0} < max{d{q,pi) - rfmi,0}.

But this will not affect the behavior or correctness of the search algorithm -
objects rooted in the subtree ofp2 are not closer than max{d{q^ pi) — dmi, 0},
even though the lower bounds may claim the opposite. In other words, objects
in the left subtree of p2 (the set So) are somewhere in the white area inside the
ball region of p2 and not in the shaded region (see Figure 2.5). On the other
hand, objects in the right branch (the set Si) must be in the hatch-marked area
and not outside the ball region around pi.

In constructing the VPT, many distance computations between pivots and
objects are evaluated. For every object o in a leaf, distances are computed to
each pivot p on the path from root to leaf. This information can be used to
construct a more efficient search algorithm. The idea is employed in so-called
VP^ trees, which are variants of VPTs proposed in [Yianilos, 1993]. Distances
computed during insertion of objects are remembered and stored in the structure
of the VP^ tree. They are then used in the range search algorithm as follows:

• if \d{q^p) — d{p,o)\ > r holds, we discard the object o without actually
computing the distance d{q, o).

74 SIMILARITY SEARCH

• if {d{q^ p) + d{p^ o)) <r holds, we directly include the object o in the query
response set, again without computing the distance d{q^ o).

Given the distances d{q^p) and d{p^ o). Lemma 1.1 (pg. 29) forms the lower
and upper bounds of the actual distance between q and o:

\d{q,p)-d{p,o)\ <d{q,o) < d{q,p) + d{p,o).

Thus the previous two pruning conditions are in fact direct consequences of
Lemma 1.1.

Another variant of the VPT, also proposed in [Yianilos, 1993], is called the
Yps6 |.j.gg -pî jg |.j.̂ g jg ̂ further extension of the VP^ tree, where each leaf node
is conceived as a bucket, that is, a unit of storage able to accommodate more
than one object.

1.4.1 Multi-Way Vantage Point Tree

Figure 2.4b shows an elementary situation in which the search algorithm of
the VPT must enter both subtrees and examine all objects. If such a situation
occurs in many tree nodes, the global efficiency of the search deteriorates.
In [Bozkaya and Özsoyoglu, 1997], the authors have tried to approach this
problem by extending the binary VPT to a fc-ary tree, with k > 2. The tree uses
k — 1 thresholds (percentiles) dmi r " ^ ^mk-i ^^ place of the single median dm
to partition the dataset into k subsets via spherical cuts. The modified tree is
called the Multi-Way Vantage Point Tree, mw-VPT. Unfortunately, experiments
reveal the performance of mw-VPTs is not always better because the spherical
cuts become too thin. Take, for example, the case of high-dimensional domains
where distances between any pair of objects are practically the same. The
search algorithm leads to more branches of the tree being accessed during
query execution. If i of A: children of a node have to be searched then i distance
computations are evaluated at the next level because all distances between the
query object q and each pivot of the accessed children have to be determined -
the VPT keeps a different pivot for each internal node at the same level.

Another extension of the VPT is called the Optimistic Vantage Point Tree,
presented in [Chiueh, 1994]. This paper formulates algorithms for nearest
neighbor queries and reports exhaustive performance tests on a database of
image features.

These VPTs require 0{n) space, the construction time for a balanced tree is
0{n\ogn), and search time complexity is (9(logn). The author of [Yianilos,
1993] claims this is only valid for very small query radii - too small to be
interesting. The construction time of mw-VPT is ö{n\og^n) in terms of
distance computations. The space complexity is the same, i.e., 0{n). Likewise
search time complexity is 0{[og^ n).

Survey of existing approaches 75

Figure 2.6. (a) An example of bpp function with excluded points emphasized, (b) the VPF
consisting of two trees.

1.5 Excluded Middle Vantage Point Forest
The Excluded Middle Vantage Point Forest, VPF, presented in [Yianilos,

1999], is another structure based on the ball partitioning principle. The moti-
vation for the VPF comes from the following observation: Though the search
time of the VPT [Yianilos, 1993] is sublinear, its performance depends upon
not only the dataset, that is the distance distribution in X, but also on the choice
of specific query object q. The VPF structure supports the worst-case sublinear
search time for queries with a fixed radius up to the maximum p, so perfor-
mance does not depend on the query object distribution. The VPF introduces
a new concept of excluding objects at middle distances by modifying the ball
partitioning technique. This principle has already been described in Section 5
of Chapter 1. For convenience, we repeat the key formula below.

{ Oif d{o,p) <dm- p
lifd{o,p)>dm + p (2.2)

2 otherwise
Figure 2.6a depicts an example of the bpp function, in which a dataset has
been divided into two sets SQ^SI, with the exclusion set S2 containing objects
excluded from the partitioning process. A binary tree is built recursively by
repartitioning ^o and ^ i . The resulting exclusion sets ^2 are used to create
another binary tree via the same principle. This procedure is repeated, and
a forest of VPTs is produced. Figure 2.6b provides an example of the VPF.
The first tree is built on the dataset X. All exclusion sets of the first tree, i.e.,
{S'2,82^82^}, are organized in the second tree. This process continues until
the exclusion sets are not empty.

Excluding objects at distances near the threshold dm has the outcome that
no more than one branch of any internal node must be followed if the query

76 SIMILARITY SEARCH

radius is less than or equal to p. The following tree is searched if and only if
the excluded area must be visited. It is correct to have the search algorithm
enter only a single subtree (left or right) because every pair of objects (a;, y)
such that X belongs to the left subtree and y belongs to the right, must be at
a distance greater than 2p, that is, d(x^ y) > 2p. To prove this, consider the
definition of the bpp function in Equation 2.2. This implies d{xjp) < dm — p
and d{y^p) > dm + P- Since the triangle inequality holds between x, y,p, we
get (i(x, y) + d{x, p) > d{y^ p). Combining these inequalities and simplifying,
we arrive at the desired formula, d(x, y) > 2p.

The VPF is linear in 0{n) space, with a construction time of (9(n^~^), where
0{n^~^) is the number of trees in the VPF. Similarity queries are answered in
0{in}~^ log n) distance computations. In a parallel environment with 0{n^~^)
processors, search complexity is logarithmic, (9(logn). The parameter 0 <
a < 1 depends on p, the dataset, and the distance function. Unfortunately, to
achieve a greater value of a, the p parameter must be quite small.

2. Generalized Hyperplane Partitioning Approaches
In this section, we survey methods based on an approach which is orthog-

onal to ball partitioning. Specifically, we focus on Bisector trees and variants
on them called the Monotonous Bisector Trees and Voronoi Trees. Next, we
discuss properties of Generalized Hyperplane Trees. All these techniques share
a common architecture based upon generalized hyperplane partitioning.

2.1 Bisector Tree
Probably the first indexing structure to use generalized hyperplane partition-

ing was the Bisector Tree (BST), proposed in [Kalantari and McDonald, 1983].
The BST is a binary tree built recursively over a dataset X as follows: Two
pivots pi, p2 are selected at each node and a hyperplane partition is applied. Ob-
jects nearer the pivot pi than p2 form the left subtree, while the objects closer to
P2 create the right subtree. For each of the pivots, covering radii are established
and stored in respective nodes. The covering radius is the maximum distance
between the pivot and any object in its subtree. The search algorithm for range
query i?(g, r) enters a subtree if d(g, p^) — r is not greater than the covering ra-
dius r^ of Pi. Thus, we can prune a branch if the query does not intersect the ball
centered at pi with covering radius rf. The pruning condition d{qj pi) —r < rf
is correct because its modification d{q^pi) — r^ < r is a direct consequence of
the lower bound of Lemma 1.2 (pg. 31) with substitutions ri = 0 and r^ = rf.
From the definition of the range query, d{q^ 6) is upper-bounded by the query
radius r.

A variant of the BST, called the Monotonous Bisector Tree (MBT), has been
proposed in [Noltemeier et al., 1992b, Noltemeier et al., 1992a]. The idea

Survey of existing approaches 77

P 1 P 2

(a)

GHT

(b)

Figure 2.7. Generalized Hyperplane Tree (GHT): (a) a range query requiring access to both
subsets of the hyperplane partition, (b) the corresponding structure of the tree.

behind this structure is that one of the pivots of each internal node other than
the root node is inherited from its parent node. Specifically, pivots representing
the left and the right subtrees are copied to the corresponding child internal
nodes, respectively. This technique results in a structure with fewer pivots, and
thus fewer distance computations are needed to execute a query.

BSTs are linear in space 0{n) and require 0{n log n) distance computations
to construct the tree. Search complexity is not analyzed by the authors.

An improvement on the BST called the Voronoi Tree (VT) is proposed
in [Dehne and Noltemeier, 1987]. The VT uses two or three pivots in each
internal node and also has the property that the covering radii are reduced as
we move downwards in the tree. This provides better packing of objects in
subtrees. The author of [Noltemeier, 1989] shows that balanced VTs can be
obtained using an insertion algorithm similar to that of B-trees [Comer, 1979].

2.2 Generalized Hyperplane Tree
The Generalized Hyperplane Tree (GHT) proposed in [Uhlmann, 1991] is

very similar to the BST in that both partition the dataset recursively via the
generalized hyperplane principle. The difference is that the GHT does not use
covering radii as a pruning criterion during the search operation. Instead, the
GHT uses the hyperplane between pivots pi and p2 to decide which subtrees
to visit. Figure 2.7 depicts an example of the GHT. In (a), the partitioning is
indicated and a range query specified. The corresponding tree structure can
be seen in (b). At search time, we traverse the left subtree if d{q^pi) — r <
d{q^P2) + ^' The right subtree is visited if d{q.,pi) + r > d{q^p2) — r holds.

78 SIMILARITY SEARCH

Again, note that it is possible to enter both subtrees. Observe also that the first
inequality comes from Lemma 1.4 (pg. 34) and from the fact that d{q^ o) < r,
i.e., from the constraint given in the query specification. The second inequality
is based on the same prerequisites, however. Lemma L4 is used in reverse, that
is, the assumption about the position of o is (i(o,pi) > d(o,p2)- A modification
of the GHT that adopts the idea of reusing one pivot from the parent node,
applied in MBTs, is presented in [Bugnion et al., 1993].

The space complexity of GHTs is 0{n) and O(nlogn) distance computa-
tions are needed to construct the tree, the same as with BSTs. Unfortunately,
search complexity was not analyzed by the authors. [Uhlmann, 1991] argues
that GHTs should work better than VPTs in high-dimensional vector spaces,
but no proof is provided.

3. Exploiting Pre-Computed Distances
When distance computations become expensive, a sound objective is to re-

duce their number to a minimum. To give efficient answers to similarity search
queries, [Shasha and Wang, 1990] have suggested using pre-computed distances
between data objects. For a datafile of n objects, a table of size n x n is used to
store distances between data objects once computed. Pairwise distances which
are not stored are estimated as intervals using the pre-computed distances. Dis-
tances unknown in advance will be, e.g., those from a query object to database
objects. This technique of storing and using pre-computed distances may be
effective for datasets of small cardinality. But space requirements and search
complexity become overwhelming for larger files.

In this section, we discuss other techniques based on a matrix of distances
between objects in a metric space. Specifically, we present the Approximating
and Eliminating Search Algorithm and its linear variant. We also briefly men-
tion other modifications or improvements, such as TLAESA, ROAESA, and
Spaghettis.

3.1 AESA
The Approximating and Eliminating Search Algorithm (AESA), presented

in [Vidal, 1986, Vidal, 1994], uses a matrix of distances between database
objects which have been computed during the creation of the AESA structure.
The structure is simply an n x n matrix holding the distances between all pairs
of n database objects. Due to the symmetry property of metric functions only
that half of the matrix lying below the diagonal need to be stored, resulting in
n{n — l) /2 distances. Unlike the methods of previous sections, every object
in the AESA plays the role of pivot.

The search operation for a range query R{q^ r) (and similarly for nearest
neighbor queries) picks an object p at random and uses it as a pivot. The distance

Survey of existing approaches 79

from ^ to p is evaluated and used for pruning some objects. An object o can be
pruned if \d{q^p) — d{p^ o)\ > r, i.e., if the lower bound from Lemma 1.1 on
page 29 is greater than the query radius r. Note again that this pruning condition
only utilizes distances which have already been evaluated. The algorithm then
chooses another pivot from among the still remaining objects. The choice of
pivot is influenced by the lower bound \d{q^p) — d{p^ o)\. Since we want to
maximize the pruning effect, we must maximize the lower bound resulting
in the choice of the closest object p to q [Vidal, 1986]. The new pivot is
used in the pruning condition to further eliminate some non-discarded objects.
The process is repeated until the set of non-discarded objects is small enough.
Finally, the remaining objects are checked directly with q, i.e., distances d(q^ o)
are evaluated and objects satisfying d{q^ o) < r are returned.

According to experiments presented in [Vidal, 1994], AESA performs an
order of magnitude better than competing methods and it is argued that it has a
constant query time with respect to the size of database (0(1)). This superior
performance is obtained at the expense of quadratic space complexity 0{n?)
and quadratic construction complexity. The extra CPU time is spent scanning
the matrix, and ranges from 0{n) up to O(n^). However, we should note
that one distance computation is much more expensive than one scan through
the matrix. Although its performance is promising, AESA is applicable only
for small datasets. If, by contrast, range queries with large radii, or nearest
neighbor queries with high k are specified, AESA tends to require 0{n) distance
computations, the same as a trivial linear scan.

3.2 Linear AESA
The main drawback of the AESA approach being quadratic in space is solved

in the Linear AESA (LAESA) structure [Mico et al., 1992, Mico et al., 1994].
This works around the problem by storing distances from objects to only a
fixed number m of pivots. Thus, the distance matrix is n x m rather than the
n(n — 1) entries used in the AESA. However, this has its price: a new problem
arises in choosing appropriate pivots. In [Mico et al., 1994], the pivot selection
algorithm attempts to choose pivots that are as far away from each other as
possible, in keeping with the observations noted in Section 10.5 of Chapter 1.

The search procedure is nearly the same as in the AESA, except for the fact
that some objects will not be the pivots. Thus, we cannot choose the next pivot
from non-discarded objects up to now, because we might have eliminated some
pivots. First, the search algorithm eliminates objects using all pivots. Then, all
remaining objects are directly compared with the query object q. More details
can be found in [Hjaltason and Samet, 2000], which also provides a description
of the nearest neighbor search algorithm.

The space complexity and construction time of LAESA are 0{mn), while
search complexity is m + 0(1). The extra CPU time can be reduced by a

80 SIMILARITY SEARCH

modification called Tree LAESA (TLAESA), proposed in [Mico et al., 1996].
TLAESA builds a GHT-like structure using the same m pivots, with the ex-
tra CPU time being between (9(logn) and 0{mn). The AESA and LAESA
approaches are compared in [Rico-Juan and Mico, 2003].

3.3 Other IMethods

A structure similar to the LAESA is proposed in [Shapiro, 1977]. It also
stores run distances in a matrix n x m. However, the search procedure for
R{q^r) queries is slightly different. Database objects (o i , . . . On) are sorted
according to their distance from the first pivot pi. The search starts with the
object Oi such that |d(pi, ô) — d{pi^q)\ is minimized, for i = 1 , . . . , n. Note
that this is the lower bound on d{q^ oi) defined by Lemma 1.1. In other words,
we start with an object potentially closest to q. The object Oi is checked against
all pivots pj (j = 1 , . . . , m) and if \d{pj^Oi) — d{q^ pj)\ > r is true for any pj,
then Oi cannot qualify for Ä(g, r). Observe that distances d{pj, Oi) are stored in
the matrix and the distances d{q^pj) are computed only once at the beginning
of the query evaluation. If Oi is not eliminated by this condition, the distance
d{q^ Oi) must be computed to decide whether Oi qualifies or not. The search
continues with objects 0^+1,0^-1,0^+2? 0^-2,... until the pruning conditions
\d{pi, Oi+c) - d{q,pi)\ > r and \d(pi, Oi^c) - d{q,pi)\ > r are valid.

Another improvement on LAESA is a method called Spaghettis, introduced
in [Chavez et al., 1999a]. This approach also stores run distances, organized in
m arrays of length n. Each array of distances to a pivot is sorted according to
the distances it contains. The order of any two objects o ,̂ Oj may be inconsistent
from one array to another, since distances to the corresponding pivots may differ
e.g. d{pi^Oi) < d{pi^Oj) mid d{p2^0i) > d{p2^0j). Thus, permutations of
objects must be stored with respect to the preceding array. During the range
search, m intervals are defined on individual arrays, [d{q^pi) — r^d{q^pi) +
r] , . . . , [d{q^pm) — 5̂ d[q^pm) + v]. All objects that qualify for the query will
belong to the intersection of all these intervals. Each object in the first interval
is checked to see whether it is a member of all other intervals - the stored
permutations are used for traversing through arrays of distances. Finally, the
non-discarded objects are compared with the query object for qualification. The
extra CPU time is reduced to 0{m log n).

Both AESA and LAESA have an overhead of 0{n), measured in terms of
computations other than distance evaluations (i.e., searching the matrix). The
Reduced Overhead AESA (ROAESA) from [Vilar, 1995] applies heuristics to
eliminate unneeded traversals of the matrix. However, this technique is only
applicable to nearest neighbor queries, and the range search algorithm is not
accelerated. A variant of LAESA, designated the Approximating fc-LAESA
(Ak-LAESA), is presented in [Moreno-Seco et al., 2003]. This variant pro-

Survey of existing approaches 81

vides a faster algorithm for kNN queries particularly designed for classification
purposes.

4. Hybrid Indexing Approaclies
Indexing methods which employ pre-computed distances provide promising

performance boosts in terms of computational costs. Their disadvantage lies in
their enormous space requirements. A straightforward remedy is to combine
both the partitioning principle and the pre-computed distances technique into
a single index structure. Basically this entails having search algorithms take
advantage of stored pre-computed distances while traversing a hierarchy-like
structure built using partitioning principles.

Such an approach is applied to Multi Vantage Point Trees, presented later
in this section. We also tackle slightly different approaches based on Voronoi
diagrams, namely the Geometric Near-neighbor Access Tree and the Spatial
Approximation Tree. Finally, we also provide the reader with a short summary
of the M-tree, a disk-based access structure which has become very popular.
The M-tree and its variants are discussed in-depth in Chapter 3. In addition, we
briefly mention the new concept of similarity hashing, which is again analyzed
in greater depth in the next chapter.

4.1 Multi Vantage Point Tree
The Multi Vantage Point Tree (MVPT) [Bozkaya and Özsoyoglu, 1997,

Bozkaya and Özsoyoglu, 1999] is an extension of the VPT. The motivation
behind the MVPT is to cut down on the number of pivots used to construct a tree,
since computing distances between a query object and pivots brings significant
search costs. One source of motivation is the FQT described in Section 1.2.
Another interesting approach to helping reduce distance computations is based
on storing distances between pivots and objects in leaf nodes - such distances
are computed in the course of tree construction. The extra information kept in
leaves is then exploited by a sort of filtering algorithm, explained in detail in
Section 7.6 of Chapter 1. The filtering algorithm dramatically decreases the
number of distance computations needed to answer similarity queries.

The MVPT uses two pivots in each internal node, instead of one as in the
VPT. Thus, each internal node can be considered to be two VPT levels collapsed
into one node. There is one significant difference. While VPTs use different
pivots at lower levels, MVPTs apply only one. Thus all children at the lower
level employ the same pivot. This allows for fewer pivots while still preserving
the fanout, or degree of branching. Figure 2.8 depicts a situation where a VPT
is collapsed into an MVPT. Observe that some sets are partitioned using pivots
that are not members of the sets. This never occurs in VPTs. In Figure 2.8b,
so is the set around pi which is divided using p2 and the radius dm^. In this

82 SIMILARITY SEARCH

(a)

ll

2I ^m

\

dm,

3 1 '^
i \

(b)

1112

\

Figure 2.8. Comparison of the VPT and MVPT structures: (a) VPT with three pivots for
partitioning to four sets, (b) MVPT using only two pivots.

case, each pivot leads to two subsets, which implies that the fanout of an MVPT
node is 2^. Since a pivot can generally partition data into m subsets, an internal
node can root m? child nodes. In addition, MVPT can employ k pivots in each
internal node, which implies a fanout of m^. Moreover, each object in the leaf
node is associated with a list of distances to the first / pivots, which are used
for additional pruning at search time.

Since no objects are duplicated, space complexity is 0{n) - objects chosen as
pivots appear only in internal nodes. However, MVPTs need some extra space
to keep I pre-computed distances for each object in leaves. Construction time
complexity is 0{nk log^k n), where log f̂c n is the height of the balanced tree.
Search complexity is 0{k log^k n), but is valid only for very small query radii.
In the worst case, search complexity will be 0{n). The authors of [Bozkaya and
Özsoyoglu, 1999] show experimentally that MVPTs outperform VPTs, which
they mainly attribute to the greater number of pivots in internal nodes rather
than the increased fanout m. The largest performance boosts are achieved by
storing more pre-computed distances in leaves.

4,2 Geometric Near-neighbor Access Tree
The Geometric Near-neighbor Access Tree (GNAT), proposed by [Brin,

1995], uses m pivots in each internal node. Specifically, a set of pivots P =
{pii • • • ?Pm} is chosen and the dataset X is split into S^i,..., Sm subsets, de-
pending on the shortest distance to a pivot in P. In other words, for any object
o G X — P, o is a member of the set Si if and only if d{pi^ o) < d{pjjo) for
all j = 1 , . . . , m. Thus, applying this procedure recursively we build an m-ary
tree. Figure 2.9 shows a simple example of the first level of a GNAT structure.

Survey of existing approaches 83

Pi P2 P3 P4

O5 O7 O4 Og O2 O3 O9 Oj Og

GNAT

(a) (b)

Figure 2.9. The Geometric Near-neighbor Access Tree: (a) an example of partitioning, (b) the
corresponding tree.

Observe the close relationship between this idea and the Voronoi-like partition-
ing of vector spaces [Aurenhammer, 1991]. Each subset Si corresponds to a
cell in the Voronoi diagram - GNAT calls this cell the Dirichlet domain. The
parameter m is adjusted according to the level of the tree. In fact, the number
of children (i.e., the value of m) should be proportional to the number of data
objects allocated in the node.

Besides applying the m-ary partitioning principle, the GNAT also retains
objects' distances to their respective pivots. This enables additional pruning
during the search, resulting in a range search algorithm quite different from the
one used for the GHT. In each internal node, an m x m table consisting of
distance ranges is stored. Specifically, the minimum and maximum distances
between each pivot pi and the objects of each subset Sj are stored. Formally,
the range [r\^, r^^], i^j = 1 , . . . , m, is defined as follows:

^J _ min d{pi,o),
oeSjU{pj}

r^u = max d{pi^o).
oeSjU{pj}

Note that the lower bound r^ for pivot pi itself is equal to zero, since the
minimum is at distance d{pi^pi) = 0. Figure 2.10 illustrates two ranges. The
first [r̂ *-̂ , r^j^] is defined for pivot pi and set Sj around pivot pj, while the second
is [rj-^, rj^^] for pivot pj itself.

84 SIMILARITY SEARCH

Figure 2.10. An example of the pruning effect of ranges in GNAT for two queries R{qi,ri)
andi?(^2,r2).

The range search algorithm for query R{q^ r) proceeds depth-first. In each
internal node N, the distances between q and the pivots of Â are computed
and subtrees not containing qualifying objects are eliminated. After all dis-
tances from q to pivots have been computed, the algorithm visits all subtrees
that remain. Starting with the set of pivots P , the procedure applied in each
internal node is described in the following steps: First, pick one pivot pi from
P (repeatedly, but do not pick the same pivot twice) and compute the distance
d{pijq). If d{pi,q) < r holds, the pivot pi is returned in the query result.
Afterwards, for all pj E P we remove pj from P if d{q^pi) — r > r]^ or
d{q^ Pi) + r < r\^. The inequalities are direct consequences of the lower bound
max{d{qjPi) — r]^^rl'^—d{q^Pi)} < r of Lemma 1.2 (pg. 31) with d(g,o) < r.
When all pivots in P are examined, the subtrees of the node N corresponding
to the remaining pivots in P are visited. Note that a pivot pj can be discarded
from P before its distance to q has been evaluated. Figure 2.10 depicts a sit-
uation in which two range queries P(gi , r i) and ^(^2,^2) are given. In this
example, only the range [r}^ ̂ r]^] is sufficient for the query Ä(gi, ri) to discard
Pj. However, the other query requires the additional range[rĵ ,r;̂ *^] to prune
the subtree around pj.

The space complexity of the GNAT index structure is 0{nm'^), because
tables consisting of m? elements are stored in each internal node. GNAT is
built in 0{nm log^ n) time. The search complexity was not analyzed by the
authors, but experiments in [Brin, 1995] reveal that the GNAT outperforms the
GHT and VPT structures.

Survey of existing approaches 85

4.3 Spatial Approximation Tree
The indexes which have been described so far all use a partitioning principle

to recursively divide the data space into subsets. For example, the GHT and
GNAT are inspired by the Voronoi-like partitioning. In the follov^ing, we intro-
duce the Spatial Approximation Tree, the sa-tree (SAT), proposed in [Navarro,
1999, Navarro, 2002]. The SAT is also based on the Voronoi diagrams, but in
contrast to the GHT and GNAT it tries to approximate the structure of the Delau-
nay graph. Given a Voronoi diagram, a Delaunay graph, defined in [Navarro,
2002], is a graph where each node represents one cell of the Voronoi diagram
and where nodes are connected with edges if the corresponding Voronoi cells
are directly neighboring cells. In other words, the Delaunay graph is a repre-
sentation of relations between cells in the Voronoi diagram. In the following,
we use the term object for a node of the Delaunay graph and vice versa.

The search algorithm for the nearest neighbor of a query object q starts with
an arbitrary object (node in the Delaunay graph) and proceeds to a neighboring
object closer to q as long as it is possible. If we reach an object o where all
neighbors of o are further from q than o, the object o is the nearest neighbor of q.
The correctness of this simple algorithm is obvious. Unfortunately, it is possible
to show that without more information about a given metric space M = (P^d),
knowledge of the distances between objects in a finite set X C D does not
uniquely determine the Delaunay graph for X (for further details see [Navarro,
2002, Hjaltason and Samet, 2003a]). Thus, the only way to ensure the search
procedure is correct is to use a complete graph, that is, the graph containing all
edges between all pairs of objects in X. However, such a graph is not suitable
for searching because the decision as to which edge should be traversed from
the starting object requires computing distances from the query to all remaining
objects in X. This boils down to a linear scan of all objects in the database and
thus, from a searching point of view, is useless.

For a dataset X, the SAT is defined as follows: An arbitrary object p is
selected as the root of the tree and the smallest possible set N{p) of all its
neighbors is determined so that:

o e N{p) ^ Vo' G N{p) \ {o} : d(o,p) < d{o, o').

The intuition behind this definition is that for a valid set N{p) (not necessarily
the smallest), each object of N{p) is closer to p than to any other object in N{p)
and all objects in X\A/^(p) areclosertoanobjectin A/'(p) than top. Figure 2.11b
shows an example of SAT built on a dataset depicted in Figure 2.11a. The
object Ol has been selected as the root node. The set of neighbors for oi is
N{oi) = {02,03,04,05}. Note that object 07 cannot be included in N{oi)
since 07 is closer to 03 than to oi.

To build the tree, a child node is defined for every neighbor and the objects
nearest the child are structured in the same way as defined above. The distance

86 SIMILARITY SEARCH

5 • O,

3

• ^ 2 • • O
On

• %
• o«

(a) (b)

F/gwr^ 2.11. An example of SAT: (a) the dataset, (b) SAT structure with the root oi.

to the furthest object o from p is also stored in each node, i.e., for the root node,
maxoex{ci(p, o)}. In conventional terminology, it is the covering radius r^.

As argued in [Navarro, 2002], the construction of N{p) is NP-complete, so
a heuristics is proposed which builds the set N{p) in a way which may not be
minimal. The method of selecting the set of neighbors influences the shape of
the resulting tree. When the set is not minimal the fanout of the tree increases,
which impacts upon search costs. The heuristics starts with an object p, a set
S = X\ {p}, and initially empty set N{p). We first sort the members of S
with respect to their distance to p. Next, we pick an object o from S and add
it to N{p) if it is closer to p than any other object in N{p). In this fashion, we
incrementally construct a suitable set of neighbors.

The range search algorithm for the query Ä(g, r) starts at the root node and
traverses the tree, visiting all non-discardable subtrees. Recall that at the node
p, we have the set of all neighbors N{p). The algorithm first finds the closest
object Oc G N{p) U {p} to q. Then, it discards all subtrees o^ 6 N{p) such that

d{q,Od)>2r + d{q,Oc). (2.3)

Such a pruning criterion is correct and is a consequence of Lemma 1.4 (pg. 34)
with substitutions pi =• Od and p2 = o^ In particular, we get

max{ ,0} < d{q,o).

Providing that d{q, o) <r (the range query constraint) and q is closer to Oc than
to Od we get {d{q^ Od) — d{q^ Oc))/2 < r. The branch Od can easily be pruned if
{d{q, Od) — d{q^ Oc))/2 > r, which is exactly what we desired.

The reason we select the closest object Oc to q is we want to maximize the
lower bound of Lemma 1.4. When the current node is not the root of tree,
we can even improve the pruning effect. Figure 2.12 depicts a sample SAT

Survey of existing approaches 87

Figure 2.12. A sample of the SAT structure.

with root t, current node p (with neighbors pi, P2) Ps). and query object q. The
dashed lines represent the boundaries between Voronoi cells of the first level of
the SAT. The dotted lines depict the same for the second level. Assuming the
current node is p, the algorithm presented above selects p among {p, ^1,^2,^3}
as the closest object to q, even though the object 52 is closer. If we choose
52 as the closest object, we further strengthen the pruning effect. However,
this requires modifying the procedure for picking the closest object as follows:
Select the closest object Oc from p's ancestor, including its neighbors and their
associated neighbors, i.e., Oc G UOGA(P)(^(^) ^ i^})- Here, A{p) consists
of the ancestors of p and its neighbors - in the figure, A{p) = {t, p, 5, u^ v}.
Finally, the covering radius r^ of each node is used to further reduce search
costs. We do not visit a node p if d{q^ p) > r^ + r. This expression is derived
from the lower bound in Lemma 1.2 (pg. 31) with r/ = 0, r/̂ — r^ and from the
fact that d{q^ 0) <r. The search algorithm is correct and returns all qualifying
objects regardless of the strategy of selecting the closest object Oc. In other
words, the strategy only influences the efficiency of pruning, see Equation 2.3.

The tree is built in (!)(nlogn/loglogn) time, takes 0{n) space and its
search complexity is e(n^-®(Viogiogn)^ jj^^ ^pj; jg designed as a static
structure. More details can be found in [Navarro, 1999, Hjaltason and Samet,
2003a, Navarro, 2002]. A dynamic version of SAT is presented in [Navarro and
Reyes, 2002].

4.4 IVl-tree
A dynamic structure called the Metric Tree (M-tree) is proposed in [Ciaccia

et al., 1997b]. It can handle data files that change size dynamically, which
becomes an advantage when insertions and deletions of objects are frequent.
In contrast to other metric trees, the M-tree is built bottom-up by splitting its
fixed-size nodes. Each node is constrained by sphere-like (ball) regions of the
metric space. A leaf node entry contains an identification of the data object.

88 SIMILARITY SEARCH

its feature value used as an argument for computing distances, and its distance
from a routing object (pivot) that is kept in the parent node. Each internal node
entry keeps a child node pointer, the covering radius of the ball region that
bounds all objects indexed below, and its distance from the associated pivot.
Obviously, the distance to the parent pivot has no meaning for the root. The
pruning effect of search algorithms is achieved by using the covering radii and
the distances from objects to their pivots in parent nodes.

Dynamic properties in storage structures are highly desirable but typically
have a negative effect on performance. Furthermore, the insertion algorithm of
the M-tree is not deterministic, i.e., inserting objects in different order results
in different trees. That is why the bulk-loading algorithm has been proposed
in [Ciaccia and Patella, 1998]. Thebasicideaof this algorithm works as follows:
Given a set of objects, the initial clustering produces k sets of relatively close
objects. This is done by choosing k distant objects from the set and making
them representative samples. The remaining objects get assigned to the nearest
sample. Then, the bulk-loading algorithm is invoked for each of these k sets,
resulting in an unbalanced tree. Special refinement steps are applied to make
the tree balanced.

The idea of M-trees was later extended by [Traina, Jr. et al., 2000b] in
a metric tree structure called the Slim-tree. In order to get control over the
overlap between metric regions, the fat-factor is defined and systematically
used. The concept of fat-factor has been described in detail in Section 10.4 of
Chapter 1. Slim-trees also use new insertion and split algorithms which result
in improved performance. Slim-trees and many other variants of M-trees are
described in Chapter 3.

4.5 Similarity Hashing
Similarity Hashing (SH), as proposed in [Gennaro et al., 2001] is built upon a

completely different principle. It is a multi-tier hashing structure, consisting of
search-separable sets on each tier, organized in buckets. The structure supports
easy insertion and bounded search costs, because at most one bucket need
to be accessed at each level for range queries up to a pre-defined value of the
search radius. At the same time, the number of distance computations is always
significantly reduced by the use of pre-computed distances obtained at insertion
time. Buckets of static files can be arranged in such a way that I/O costs never
exceed the cost of scanning a compressed sequential file. Experimental results
demonstrate the performance of SH is superior to other available tree-based
structures.

The similarity hashing approach is exploited in the so-called the D-index
structure [Dohnal et al., 2003a]. The D-index applies excluded middle parti-
tioning to hashed organizations. In contradistinction to VPF, navigation along
the tree branches is unnecessary, and each storage bucket is directly accessible.

Survey of existing approaches 89

In principle, the concept of similarity hashing is not necessarily restricted to
the excluded middle partitioning principle. [Dohnal et al., 2001] define another
three p-split functions that are able to achieve the same effect, i.e., to produce sets
separable up to a pre-defined distance radius p. Based on well-known geometric
concepts, these methods are called the elliptic, hyperbolic, and pseudo-elliptic
p-split functions. The second section of Chapter 3 deals with the D-Index and
its variants suitable for similarity joins, and further extends the description of
similarity hashing.

5. Approximate Similarity Search
Some applications can benefit from a very fast response to similarity queries

even when it is obtained at the expense of precision in results. The fundamental
concepts have already been discussed in Section 9 of Chapter 1. In the following,
we survey some interesting approaches that have been proposed in the literature.

First, we briefly cover certain approximation techniques that exploit space
transformations. Then we provide a more extensive presentation of techniques
which reduce the subset of data that must be examined. Most of these techniques
were originally applied to vector spaces, but some can also be used in generic
metric spaces.

5.1 Exploiting Space Transformations

Space transformations are convenient to use for approximate similarity search.
This has already been mentioned in Section 9 of Chapter 1. Obviously the trans-
formations must satisfy the constraints described in Section 8 of Chapter 1. The
general strategy is as follows: First, the original space is transformed. Then
all search requests are executed in the projected space. Some false hits may be
returned - but approximate similarity search algorithms do not apply the final
cleansing phase which is necessary for obtaining exact results.

An approach to dimensionality reduction specifically designed for approxi-
mate similarity searching has been proposed in [Egecioglu and Ferhatosman-
oglu, 2000]. The authors propose a dimensionality reduction technique that
offers an easy way to compute the inner product between vectors approxi-
mately. Given a vector z = (^ i , . . . , ^d), let ipp{z) denote Lp norm to the p-th
power. Then ^p{z) - (|| z \\p)P = [Lp{z,6)]P, where 0 - (0 , . . . ,0). The
inner product of two vectors < x,y > can be approximated with the estimate
of its m-power as < f, y y"^^ bii;i{x)^i{y) + ... + hm'il^rn{x)i)m{y). where
m < d and b i , . . . , 6^ are parameters that should be tuned to obtain a good
approximation. This technique saves disk space by storing the m-dimensional
vector (^ i (x) , . . . , ipmi^)) instead of the d-dimensional vector x, given that
the approximate inner product can be computed using it. It also allows the

90 SIMILARITY SEARCH

Euclidean distance || f — y ||2 to be also approximated, given that

II x-y\\2= \/'02(^) + ip2{y) -2<x,y>.

In [Ogras and Ferhatosmanoglu, 2003], this approximation method is further
refined as follows: The cJ-dimensional space is divided into orthogonal sub-
spaces 5 i , . . . , 55 each having / dimensions, / = d/s. Let xPi be the projection
of vector x in the subspace Si. The Euclidean distance between x and y can be
computed exactly as jj x—y \\2=\\ SPi—yPi II2 + • • • + || ^Ps — yPg ||2- Ifthe
individual jj xPi — yPi II2 are separately approximated using the approximate
inner product technique, the approximation of the entire Euclidean distance
which results is more precise. The authors note that the basic inner product
approximation retains information on the magnitude of vectors only. A refined
technique, also based on the space decomposition, is able to additionally retain
information about the shape of approximated vectors, i.e., their direction.

A further approach to space transformation is presented in [Weber and
Böhm, 2000], based on so-called Vector Approximation files, VA-files. The
VA-file [Weber et al., 1998] reduces the size of multi-dimensional vectors by
quantizing the original data objects. It demands a nearest neighbor search per-
formed in two steps. Initially, the approximated vectors are scanned to identify
candidate vectors. Then, in the second step, the candidate vectors are visited
in order to find the actual nearest neighbors. The approximate search vari-
ant on this algorithm basically omits the second step of the exact search. A
modification of the VA-files approach has been proposed in [Ferhatosmanoglu
et al., 2000] in which the VA-file building procedure is improved by initially
transforming the data into a more suitable domain using the Karhunen-Loeve
transform, KLT. An approximate search algorithm based on the modified VA-
file approach is proposed in [Ferhatosmanoglu et al, 2001]. The performance
improvement offered by techniques based on VA-files is significant. However,
they are applicable to vector spaces only.

A final approach which falls into this category is FastMap [Faloutsos and Lin,
1995]. This technique is also suitable for generic metric spaces, provided we
have k feature-extraction functions which transform the metric space into a k-
dimensional space. A similar technique which is, however, applicable directly
to metric spaces is called MetricMap [Wang et al., 2000] and has already been
discussed in Section 8.3 of Chapter 1.

5.2 Approximate Nearest Neighbors with BBD Trees
Suppose we have a query object q and a dataset X represented in a vector

space whose distances are measured by Minkowski distance functions. Arya
et al. [Arya et al., 1998] propose an approximate nearest neighbor algorithm
which guarantees to find (1+e)-k-approximate-nearest-neighbors. Specifically,
it retrieves k objects whose distances from the query are at most 1 + e times

Survey of existing approaches 91

I«
9

10

4

•

/ / ^̂ ^̂ -̂̂ ^̂

LUl
\ ^̂̂
\ '̂ •̂-

7 ^ ^ ^
•

N \

1/

• i / y
^̂ x̂' /

-^6

•

•

Figure 2.13. Overview of the approximate nearest neighbors search algorithm using BBD trees.

larger than that of the fc-th actual nearest neighbor of q. The time complexity
of this algorithm is 0(/clogn), where n is the size of the dataset X. The
parameter e is used to control the tradeoff between the efficiency and quality of
the approximation. The higher the value of e, the higher the performance and
error.

As its underlying indexing structure, the algorithm uses the Balanced Box-
Decomposition tree (BBD) that is a variant of the Quad-tree [Samet, 1984] and
is similar to other balanced structures based on box-decomposition [Bern et al.,
1993, Bespamyatnikh, 1995, Callahan and Kosaraju, 1995]. A property of the
BBD tree is that regions associated with nodes which have the same parent do
not overlap. Node regions are recursively repartitioned until they contain only
one object, thus every region associated with a leaf node contains just a single
object. The tree has 0{n) nodes and is built in 0{dn log n) time, where d is
the number of dimensions of the vector space.

The nearest neighbor algorithm associated with this data structure proceeds
as follows: Given a query object q, the tree is traversed and the unique leaf node
associated with the region containing the query is found in O(Iogn). At this
point, a priority search is performed by enumerating leaf regions in increasing
order of distance from the query object. The distance from an object o to a
region is computed as the distance of a to the closest point that can be contained
in the region. When a leaf region is visited, the distance of the associated object
from q is measured and the k closest points seen so far are recorded. Let us call
o^ the current A:-th closest point. The algorithm terminates when the distance
from q to the region of current leaf is larger than d{q^ o^), that is, the current
region cannot contain objects whose distance from the query object is shorter
than that of o^. Since all remaining leaf regions are more distant from the
current region, the k objects retrieved so far are the k nearest neighbors to q.

92 SIMILARITY SEARCH

In contrast, the approximate nearest neighbor algorithm uses a stop condition
to terminate the search prematurely. Specifically, the algorithm stops as soon
as the distance to the current leaf region exceeds d{q^ o^)/(l + e). It is easy
to show that under these circumstances, o^ is the (1 + e)-Ä;-th-approximate-
nearest-neighbor. To clarify the behavior of the precise versus approximate
nearest neighbor search algorithms, look at Figure 2.13, in which data objects
are represented as black spots and a query lNN{q) is posed. Each object is
included in a rectangular region associated with a leaf node. Given a near-
est neighbor query lNN{q), every region is identified by a number assigned
incrementally and based on the distance of the region to the query object q.
Thus, the region containing q itself is assigned the value 1, while the region
farthest away is labeled 10. The algorithm starts to search in Region 1 for a
potential nearest object to q. The figure illustrates the situation in which Region
3 has been accessed in the current stage of execution, and the object o^ found
as the current closest object. The circumference is indicated as having radius
d{q^ o"^). The precise algorithm will continue accessing regions that overlap
the circumference and stop only after accessing Region 10, which contains
the actual nearest neighbor. The approximate algorithm, by contrast, accesses
only those regions which overlap the dotted circumference whose radius is
d{q^ o^)/(l + e). Therefore, it terminates after accessing Region 8, missing
the actual nearest neighbor.

The priority search can be performed in O(mlogn), where m stands for
the number of regions visited. The upper bound on m depends only on the
dimensionality d, e of the space and the number of nearest neighbors k, for any
Minkowski metric, and is defined as 2k + \1 + Gd/eY- Provided that d and
€ are fixed, the algorithm finds the (1 + e)-fc-approximate-nearest-neighbors in
O(fclogn) time.

Note that upper bound on m is independent of the dataset size n. How-
ever, it depends exponentially on d, so this algorithm is feasible only in low-
dimensional vector spaces.

5.3 Angle Property Technique

Other two vector-space-only techniques for reducing the number of nodes
accessed during nearest neighbor searches are proposed in [Pramanik et al.,
1999a, Pramanik et al., 1999b]. The chief novelty of these techniques lies in
their exploitation of angles formed by objects contained in a ball region, the
center of this region and a query object (see Figure 2.14). These techniques have
been successfully applied to SS-trees [White and Jain, 1996]. However, they are
generally applicable to any access method for vector spaces which partitions the
data space, restricts groups of objects with ball regions, and organizes regions
hierarchically.

Survey of existing approaches 93

Figure 2.14, An angle between objects contained in a ball region and a query object q with
respect to the center p of the ball region.

The heuristics employed in the search algorithm and proposed in [Pramanik
et al., 1999a, Pramanik et al., 1999b] is justified by the following three properties
of datasets in high-dimensional vector spaces:

• As dimensionality rises, the points in a ball region become almost equidistant
from the region's center.

• With the increasing dimensionality, the radii of smaller child ball regions
grow nearly as fast as the radius of the parent ball region, and thus their
centers also tend to be close to each other.

• Given a query point and a set of points covered by a ball region, the angle
between the query point and any point in the ball region will fall into an
interval of angles around 90 degrees. As dimensionality grows, this interval
will decrease.

Assuming regions are hierarchically structured, the algorithm uses an approx-
imate pruning condition to decide whether a region should be accessed or not.
In [Pramanik et al., 1999a], it is suggested that a region be inspected if at least
one of the following conditions holds:

• The node corresponding to the region is an internal node.

• The center of the region's parent is contained in the ball region defined by
the query object and the current candidate set of nearest neighbors.

• The region's center resides in the half of the parent's ball region closer to the
query object, i.e., the angle between the center of the region and the query
object with respect to the center of the parent's ball region is less than 90
degrees.

94 SIMILARITY SEARCH

Figure 2.15. If the query region does not intersect promising portions of the data region, the
region is discarded.

On reaching a leaf node, all objects of the leaf are examined and directly com-
pared to the query object. If an object is closer to the query object than the
current candidate for the fc-th nearest neighbor, it is added to the response,
superseding the k-th nearest neighbor.

This algorithm is, however, unable to trade performance with quality of
results. In [Pramanik et al., 1999b], the algorithm is further improved by intro-
ducing a threshold angle 6 to allow such a trade-off. Here is a brief sketch of
how the improvement comes about:

According to the properties listed above, the area where qualifying objects
are most likely to be found is close to the border of the ball region, forming an
angle of about 90 degrees with the query object. Assume 9 indicates the value
of such an angle and the angle a is obtained by considering the query object
q, the region's center p and the intersection of the query region and the region
being examined (see Figure 2.15). If the angle a is greater than Ö, the region is
accessed, otherwise it is excluded - this is the situation depicted in the figure.
Notice that if 6 = 0 all regions overlapping the query region are accessed and
the query response-set is determined exactly.

5.4 Clustering for Indexing
The Clindex technique (Clustering for indexing) performs approximate sim-

ilarity searches in high-dimensional vector spaces using an index structure sup-
ported by a clustering technique [Li et al., 2002]. The Clindex partitions the
dataset into similar clusters, i.e., into clusters containing elements close to each

Survey of existing approaches 95

Other in the space. Each cluster is represented by a separate file and all files are
sequentially stored on a disk.

The Clindex technique uses a new algorithm for building clusters of objects.
The algorithm starts by dividing each dimension of the d-dimensional vector
space into 2^ segments, so every segment can be identified using an n-bit
number. This process forms (2^)^ cells in the data space. The clustering
algorithm aggregates these cells into clusters as follows: Each cell is associated
with the number of objects it contains. The algorithm starts with the cells
containing the largest number of objects and checks to see if they are adjacent
to other clusters. If a cell is not adjacent to any cluster it is used as the seed
for a new cluster. If a cell is adjacent to just one cluster, it is attached to that
cluster. Finally, if the cell neighbors more than one cluster a special heuristics
is applied to decide whether the clusters should be merged or to which cluster
the cell belongs. This process is iterated until the remaining cells contain fewer
objects than a specified threshold. Underfilled or empty cells are grouped in an
outlier cluster and stored separately.

Once the clusters are obtained, an indexing structure is built for speeding
access to them. The index is a simple encoding scheme which maps an object
to a cell and a cell to its corresponding cluster. The associations between clusters
and disk files are also kept.

Approximate similarity search is processed by first identifying the cluster
to which the query object belongs. This is obtained by determining the cell
which covers the query object and then identifying the corresponding cluster.
If the query's cell is empty, a cluster cannot be obtained, so a cluster having the
centroid closest to the query object is located. Once a cluster is identified, the
file corresponding to it is sequentially searched, and objects qualifying for the
query are returned. Of course, this search algorithm is approximate, because
only one cluster is examined. In fact, it might happen that objects in non-
selected clusters might also qualify for the query, so these objects are falsely
dismissed by the algorithm.

5,5 Vector Quantization Index
Another approach that uses a clustering technique to organize data and pro-

cess similarity queries approximately is the Vector Quantization Index (VQ-
index) [Tuncel et al., 2002]. The VQ-index is based on reducing both the
dataset and the size of data objects at the same time. The basic idea is to orga-
nize the dataset into subsets which are not necessarily disjoint, and then reduce
the size of data by compression. The approximate search algorithm first iden-
tifies the subset to be searched. Next, it goes through its compressed content
and qualifying objects are reported.

The dataset is grouped into subsets by exploiting a query history in the
following way: Queries from the record of requests posed in the past are divided

96 SIMILARITY SEARCH

into m clusters Ci {i = 1 , . . . , m) using the k-means algorithm [MacQueen,
1967, Duda and Hart, 1973, Kaufman and Rousseeuw, 1990]. If the query
history is too long, a sample is used instead. A subset Si of the entire dataset
corresponding to each cluster Ci is defined as follows:

Si= [j kNN{q),
qeCi

where kNN(q) obviously represents the k objects of the dataset nearest to q.
Each subset Si contains elements of the dataset close to queries in the cluster
Ci. Thus an element may belong to several different subsets. The overlap of
subsets Si versus index performance can be tuned by the choice of m and k.

The reduction in object size is obtained using the vector quantization tech-
nique [Gresho and Gray, 1992]. The objective of the vector quantization is
to map an arbitrary vector from the original d-dimensional space into a repro-
duction vector. Reproduction vectors form a set of n representatives from the
original space. The process of mapping can be decomposed into two modules -
an encoder Enc and a decoder Dec. The encoder transforms the original space
R^ into a set { 1 , . . . , n} of numbers, thus each vector x G M^ gets assigned
an integer Enc{x) — c {1 < c < n). The decoder, by contrast, maps the set
{ 1 , . . . , n} to the set of n reproduction vectors, so-called code-vectors, which
in fact, approximate all possible vectors from M ,̂ i.e., Dec{c) = x, x E R^.
For each subset Si, a separate encoder Enci and decoder Deci is defined. Si
is compressed by representing it with the set Sf^^ = {Enc^(x)|Vx e Si}. The
decoder function Deci is used to obtain the reproduction vectors corresponding
to the elements in Sf^^, i.e., the approximation of the original elements in Si.

Here is an example: Having a fixed encoder Enc, several vectors can be
mapped to a single number c. The best value for the corresponding code-
vector is one minimizing its average distance to all vectors mapped to c. In
this way, a suitable decoder function can be obtained. An approximate nearest
neighbors query is processed by locating the cluster Ci nearest the query. Next,
by applying the decoder function Deci on 5f ̂ ,̂ the set Si is reconstructed and
sequentially searched for k nearest neighbors. A certain level of imprecision is
present at both stages. In the first stage, it cannot be guaranteed that the selected
subset Si contains all objects which qualify for the given query. In the second
stage, the vectors contained in the re-created set Si might have distances to the
query object significantly different from the distances of the original vectors.
The approximation quality of the vector quantization technique depends on the
number n of code-vectors. In practice, the number n is much smaller than the
total number of vectors. Initially, the set of code-vectors is very small and huge
collisions are solved by replacing the code-vector in question with two new
vectors, improving the quality of the quantization. However, the experiments
presented in [Tuncel et al., 2002] reveal the VQ-index is very competitive and

Survey of existing approaches 97

outperforms other techniques based on linear quantization by factor of ten to
twenty, while retaining the same precision in the response.

5.6 Buoy Indexing
Another approach to approximate nearest neighbor search which is based on

clustering is presented in [Volmer, 2002]. In this proposal, the dataset is parti-
tioned into disjoint clusters bounded by ball regions. A cluster is represented
by an element called a buoy. Clusters are gradually built by assigning objects
to the cluster with the closest buoy. Radii of ball regions are defined as the
distance between the buoy of a cluster and the furthest element in that cluster.
This iterative optimization procedure attempts to find buoys of clusters so that
radii of ball regions of these clusters are minimized. However, any other clus-
tering algorithm that organizes the space into disjoint clusters bounded by ball
regions can be used with the approximate search algorithm described below.

Imagine a dataset X with clusters C i , . . . , C^ C X, where each Ci is
bounded by a ball region TZi = (Pi^n) and pi denotes the cluster's buoy.
A precise fc-nearest neighbors search algorithm accesses the clusters in the
order determined by the distance between the query and the cluster's center,
starting with the closest. The qualifying objects from every cluster visited are
determined. This process is repeated until no better objects can be found in
remaining clusters. The stop condition can be formalized as

stop if d{q, Ok) + rj < d{q, pj), (2.4)

where q is the query object of a kNN(q) query, o^ is the current k-th nearest
neighbor, and pj and TJ form a ball region TZj = {Pjif^j) of ^ cluster to be
accessed in the next step.

The proposed approximation strategy is to reduce the amount of data accessed
by limiting the number of accessed clusters, i.e., modifying the stop condition.
A parameter / (0 < / < 1) is introduced which specifies the clusters to be
accessed. Specifically, the approximate kNN search algorithm stops when
either Equation 2.4 holds, or the ratio of clusters accessed exceeds / . This
technique guarantees [/ • n] clusters will be accessed at a maximum, where n
stands for the total number of clusters.

The results of experiments reported in [Volmer, 2002] imply query execution
may be about four times faster than a linear scan, with about 95% recall ratio.
The advantage of this method is that it is not limited to vector spaces only but
can be applied to metric spaces as well.

5.7 Hierarchical Decomposition of IMetric Spaces
There are other techniques beyond those mentioned for approximate similar-

ity searching which have been especially designed for metric spaces. In what
follows, we briefly introduce the basics of these techniques. However, in view

98 SIMILARITY SEARCH

of their prominent role in the field of approximate similarity search, they are
more extensively discussed in Chapter 4.

5.7.1 Relative Error Approximation

A technique employing a user-defined parameter as an upper bound on ap-
proximation error is presented in [Zezula et al., 1998a, Amato, 2002]. In par-
ticular, the parameter limits the relative error on distances from the query object
to objects in the approximate result-set with respect to the precise results. The
proposed technique can be used for both approximate nearest neighbor and
range searches in generic metric spaces. Assuming a dataset organized in a tree
structure, the approximate similarity search algorithm decides which nodes of
the tree can be pruned even if they overlap with the query region. At the same
time, it guarantees the relative error obtained on distances does not exceed
the specified threshold. On a similar basis, nearest neighbor queries retrieve
(l+€)-/c-approximate-nearest-neighbors. Details of this technique are given in
Section 1 of Chapter 4.

5.7.2 Good Fraction Approximation

The technique presented in [Zezula et al., 1998a, Amato, 2002] retrieves k
approximate nearest neighbors of a query object by returning k objects that
statistically belong to the set of / (Z > k) actual nearest neighbors of the query
object. The value / is specified by the user as a fraction of the whole dataset.
By using the overall distance distribution, the approximate similarity search
algorithm stops when it determines that k objects currently retrieved belong to
the specified fraction of objects nearest to the query. This method is discussed
in detail in Section 2 of Chapter 4.

5.7.3 Small Chance Improvement Approximation

An approximate nearest neighbor search strategy proposed in [Zezula et al.,
1998a] and later refined in [Amato, 2002] is based upon the pragmatic observa-
tion that similarity search algorithms for tree structures are defined as iterative
processes where the result-set is improved in each iteration until no further im-
provement can be made. As for fc-nearest neighbors queries, algorithms refine
the response, which means that k objects retrieved in the current iteration will
be nearer than those in the previous one. This can be explicitly measured by the
distance between the current fc-th object and the query object. Such a distance
decreases rapidly in first iterations and it gradually slows down and remains
almost stable for several iterations before the similarity search algorithm stops.
The approximate similarity search algorithm exploits this behavior and stops
the search algorithm when the reduction of distance to the current fc-th object

Survey of existing approaches 99

slows down. A detailed description of this approach is given in Section 3 of
Chapter 4.

5.7.4 Proximity-Based Approximation

A technique that uses a proximity measure to decide which tree nodes can
be pruned even if their bounding regions overlap the query region is proposed
in [Amato et al., 2003, Amato, 2002]. This has already been discussed in
Section 10.2 of Chapter 1 from a theoretical point of view. When the proximity
of a node's bounding region and the query region is small, the probability that
qualifying objects will be found in their intersection is also small. A user-
specified parameter is employed as a threshold to decide whether a node should
be accessed or not. If the proximity value is below the specified threshold, the
node is not promising from a search point of view, and thus not accessed. This
method is defined for both nearest neighbor and range queries and is discussed
in detail in Section 4 of Chapter 4.

5.7.5 PAC Nearest Neighbor Search

A technique called Probably Approximately Correct (PAC) nearest neighbor
search in metric spaces is proposed in [Ciaccia and Patella, 2000b]. The ap-
proach searches for a (l-i-e)-approximate-nearest-neighbor with a user-specified
confidence interval. The proposed algorithm stops execution prematurely when
the probability that the current approximate nearest neighbor is not the (1+e)-
approximate-nearest-neighbor falls below a user-defined threshold 6. Details
of the approach are given in Section 5 of Chapter 4.

PART II

METRIC SEARCHING IN LARGE COLLECTIONS
OF DATA

Overview

Database scalability is a topic which has been well-explored and much-
debated, but there are still no easy answers. There are several ways to achieve
higher scalability of a database, but which of them to choose depends greatly
upon the unique needs of individual users.

Even creating a search index structure which scales to very large dimensions
presents many challenges, and the task is becoming increasingly difficult as the
amount of data grows. The most successful search engine capable of scaling all
the way to the dimension of the Web is Google, but it can only manage text-like
data.

At the same time, the term large data is relative: what was large ten years ago
is small today. In this part of the book, we assume that an index for processing
large data stores and accesses indexed features on a secondary memory, that is
on a disk.

For this reason, we first concentrate on disk-oriented metric search indexes
running on dedicated computers in Chapter 3. We provide enough detailed
description of each of the structures to allow an understanding of their func-
tionality. More specifics can then be found by following the citations to the
respective original papers. We also report results from practical experiments
which illustrate the capabilities of such single-computer implementations.

In Chapter 4, we report on the approximate similarity search. This enables
scalability problems to be sidestepped by significantly increasing search per-
formance, but with a tradeoff of reduced precision in search results.

Finally, we present the latest developments in distributed approaches to sim-
ilarity searching in Chapter 5. We show how recent trends in network architec-
tures, such as the GRID technology, the peer-to-peer communication paradigm
and overlay networks can also be exploited to develop real scalable and dis-
tributed similarity search structures for arbitrary metric distance functions.

Chapter 3

CENTRALIZED INDEX STRUCTURES

Most existing search structures have been designed to run on a single com-
puter. Let us call them centralized structures. They are built with different
assumptions about type of distance function (discrete vs. continuous), form
of query (range, nearest neighbor, etc.), and temporal properties (static or dy-
namic) of the data to be organized. Although many index structures have been
proposed as main memory structures, there are several indexes which organize
data using disk storage to allow the processing of a large volume of data. In
what follows, we focus on two basic approaches which store objects in sec-
ondary memories. Specifically, we discuss tree-based structures and methods
which employ hashing (i.e., the key-to-address transformation) principles.

1. M-tree Family
[Ciaccia et al., 1997b] have proposed a dynamic organization, called the

M-tree, which can handle data files that vary dynamically in size, i.e., in cases
when insertion and deletion of objects is frequent. In contrast to other met-
ric tree-based structures, the M-tree is built bottom-up and maintains the same
length for all tree paths because the tree is balanced. This paradigm has become
very popular and many researches have developed extensions of the M-tree stor-
age structure with a main objective of increasing search efficiency, sometimes
conditioned by specific application requirements. We start with the original
idea of the M-tree, then describe its most important extensions.

1.1 The M-tree
Most of the indexing methods described in Chapter 2 are either static, unbal-

anced, or both. They are not very suitable for dynamic environments where data
is subject to permanent alteration, nor for large data repositories where disk-

106 SIMILARITY SEARCH

based techniques are necessary. The M-tree is, by nature, designed as a dynamic
and balanced index structure capable of organizing data stored on a disk. By
building the tree in a bottom-up fashion from its leaves to its root, the M-tree
shares some similarities with R-trees [Guttman, 1984] and B-trees [Comer,
1979]. This concept results in a balanced tree structure independent of the
number of insertions or deletions and has a positive impact on query execution.

In general, the M-tree behaves like the R-tree. All objects are stored in (or
referenced from) leaf nodes while internal nodes keep pointers to nodes at the
next level, together with additional information about their subtrees. Recall that
R-trees store minimum bounding rectangles in non-leaf nodes that cover their
subtrees. In general metric spaces, we cannot define such bounding rectangles
because a coordinate system is lacking. Thus M-trees use an object called a
pivot, and a covering radius, to form a bounding ball region. In the M-tree,
pivots play a role similar to that in the GNAT access structure [Brin, 1995], but
unlike in GNAT, all objects are stored in leaves. Because pre-selected objects
are used, the same object may be present several times in the M-tree - once in
a leaf node, and once or several times in internal nodes as a pivot.

Each node in the M-tree consists of a specific number of entries, m. Two
types of nodes are presented in Figure 3.1. An internal node entry is a tuple

Internal Node:

Leaf Node:

Wi

IK

jr; |d(pi,p') [ptr;]

^

Idfa^oOlf^rfdC^

P2|r2

~^"

d(P2,pO|ptr2j-
^ ^ ^

'loJdCc^^o»)!

[P̂ r:.|d(R.pO |p t r J
^

Figure 3.1. Graphical representation of the internal and leaf nodes of the M-tree.

(p, r^, d{p,pP)jptr), where p is a pivot and r^ is the corresponding covering
radius around p. The parent pivot of p is denoted as pP and d{p^pP) is the
distance from p to the parent pivot. As we shall soon see, storing distances to
parent objects enhances the pruning effect of search processes. Finally, ptr is a
pointer to a child node. All objects o in the subtree rooted through ptr are within
the distance r^ fromp, i.e., d(o, p) < r^. By analogy, a tuple (o, d{o^ cP)) forms
one entry of a leaf node, where o is a database object (or its unique identifier)
and (i(o, cP) is the distance between o and its parent object, i.e., the pivot in the
parent node.

Figure 3.2 depicts an M-tree with three levels, organizing a set of objects
Ol , . . . , Oil. Observe that some covering radii are not necessarily minimum
values for their corresponding subtrees. Look, e.g., at the root node, where nei-
ther the covering radius for object oi nor that for 02 is optimal. (The minimum
radii are represented by dotted circles.) Obviously, using minimum values of
covering radii would reduce the overlap of individual bounding ball regions,
resulting in a more efficient search. For example, the overlapping balls of the

Centralized index structures 107

0 , | 4 . 5 | - . ^ | | 0 , | 6 . 9 | - " ^

Ol|l.4|0.0i^||O,0|l.2|3.3U[O7I 1.3| 3.8|>o]| O2I 2.9| 0.0|;)|| O4I 1.6| S .äj^)^\ 1.3|3.8|o||U2|2.9|0.0|^

X.
Oi|o.o||06|i.4||__[_j| ||Oio|o.o||03|i.2|| I || ||07|o.o||05|i.3||Oii|i.o|| || Ô j o.o|| O«! 2.9|| | || || O4I o.o|| O9I i.e] I ||

Figure 3.2. Example of an M-tree consisting of three levels. Above, a 2-D representation of
partitioning. Pivots are denoted by crosses and the circles around pivots correspond to values of
covering radii. The dotted circles represent the minimum values of covering radii.

root node in Figure 3.2 become disjoint when the minimum covering radii are
applied. The original M-tree does not consider such optimization, but [Ciaccia
and Patella, 1998] have proposed a bulk-load algorithm for building the tree
which creates a structure that sets the covering radii to their minimum values.
More details are reported in Section 1.2.

The M-tree is a dynamic structure, thus we can build the tree gradually as
new data objects come in. The insertion algorithm looks for the best leaf node
in which to insert a new object ON and stores the object there if enough space
is available. The heuristics for finding the most suitable leaf node proceeds
as follows: The algorithm descends down through a subtree for which no en-
largement of the covering radius r^ is needed, i.e., d{oNjP) < r^- If multiple
subtrees exist with this property, the one for which object ON is closest to its
pivot is chosen. Such a heuristics supports the creation of compact subtrees and
tries to minimize covering radii. Figure 3.2 depicts a situation in which object
Oil could be inserted into the subtrees around pivots 07 and 02. Because on
is closer to 07 than to the pivot 02, it is inserted into the subtree of 07. If there
is no pivot for which zero enlargement is needed, the algorithm's choice is to
minimize the increase of the covering radius. In this way, we descend through
the tree until we come to a leaf node where the new object is inserted. During
the tree traversal phase, the covering radii of all affected nodes are adjusted.

108 SIMILARITY SEARCH

Insertion into a leaf may cause the node to overflow. The overflow of a
node N is resolved by allocating a new node A '̂ at the same level and by
redistributing the m + 1 entries between the node subject to overflow and the
one newly created. This node split requires two new pivots to be selected and
the corresponding covering radii adjusted to reflect the current membership of
the two new nodes. Naturally, the overflow may propagate towards the root
node and, if the root splits, a new root is created and the tree grows up one level.
A number of alternative heuristics for splitting nodes is considered in [Ciaccia
et al., 1997b]. Through experimental evaluation, a strategy called the minimum
maximal radius mM_RAD_2 has been found to be the most efficient. This strategy
optimizes the selection of new pivots so that the corresponding covering radii are
as small as possible. Specifically, two objects PNIPN' are used as new pivots for
nodes AT, N' if the maximum (i.e., the larger, max(r^, ^AT')) of corresponding
radii is minimum. This process reduces overlap within node regions.

Starting at the root, the range search algorithm for R{q^ r) traverses the tree
in a depth-first manner. During the search, all the stored distances to parent
objects are brought into play. Assuming the current node N is an internal node,
we consider aU non-empty entries (p, r*̂ , d{p^ pP)^ptr) of N as follows:

• If \d{qjpP) — d{p^pP)\ — r^ > r, the subtree pointed to by ptr need not
be visited and the entry is pruned. This pruning criterion is based on the
fact that the expression \d{q^pP) — d(p,p^)| — r^ forms the lower bound
on the distance d{q^ o), where o is any object in the subtree ptr. Thus, if
the lower bound is greater than the query radius r, the subtree need not be
visited because no object in the subtree can qualify the range query.

• If \d{q^ pP) — d{p^ pP) \—r^<r holds, we cannot avoid computing the dis-
tance d(g, p). Having the value of d{q^ p), we can still prune some branches
via the criterion: d{q^p) — r^ > r. This pruning criterion is a direct con-
sequence of the lower bound in Lemma 1.2 in Chapter 1 with substitutions
ri = 0 and rh — r^ (i.e., the lower and upper bounds on the distance d{p^ a)).

• All non-pruned entries are searched recursively.

Leaf nodes are similarly processed. Each entry (o, d{o^ oP)) is examined
using the pruning condition \d{q^ cP) — d{o^ oP)\ > r. If it holds, the entry can
be safely ignored. This pruning criterion is the lower bound in Lemma 1.1 in
Chapter 1. If the entry cannot be discarded, the distance d{q^ o) is evaluated
and the object o is reported if d{q^ o) < r. Note that in all three steps where
pruning criteria hold, we discard some entries without computing distances to
the corresponding objects. In this way, the search process is made faster and
more efficient.

The algorithm for /c-nearest neighbors queries is based on the range search
algorithm, but instead of the query radius r the distance to the k-th current

Centralized index structures 109

nearest neighbor is used - for details see [Ciaccia et al., 1997b]. The general
idea of an algorithm for kNN queries based on range queries is presented in
Section 6.1 of Chapter 1.

From a theoretical point of view, the space complexity of the M-tree involves
0{n+mmN) distances, where n is the number of distances stored in leaf nodes,
mjsf is the number of internal nodes, and each node has a capacity of m entries.
The construction complexity claimed is 0{nm'^ log^ n) distance computations.
Search complexity was not analyzed in [Ciaccia et al., 1997b], but in [Ciaccia
et al., 1998a] an analytic cost model for M-trees is presented.

In the following, we present the most important extensions of the original
ideas applied in the M-tree.

1.2 Bulk-Loading Algorithm of IVl-tree
[Ciaccia and Patella, 1998] have proposed what was likely the first extension

of the M-tree. They defined the so-called bulk-loading algorithm for insertion.
Their technique is based on optimizations of the tree-building process, resulting
in a non-trivial performance boost. But the procedure requires the entire indexed
dataset to be given in advance to analyze the distribution of data objects and
preprocess them so that the resulting M-tree is efficiently built.

Roughly speaking, the bulk-loading algorithm performs a clustering of n
data objects in X = {o i , . . . , o^} and returns the M-tree. Given the database
X, we randomly select / objects p i , . . . , p/ where / is usually set to m, i.e., to the
number of entries per node in the M-tree. The selected objects - call them pivots
- form the sample set P. All objects of X are assigned to the nearest pivot,
thus producing / subsets P i , . . . , P/. Those subsets are used to recursively call
the bulk-loading algorithm. In this fashion, we obtain / subtrees T i , . . . , T/. By
the recursion, we acquire leaf nodes with maximally / objects. Finally, the root
node is created, all subtrees are connected to it, and the final tree T is obtained.
In other words, the bulk-loading algorithm is invoked several times on the set
of pivots P and the supertree Tgup is built. Each subtree Ti is appended to the
leaf of Tsup corresponding to pivot pi and the final T is completed.

The authors also discuss the problem of choosing the sample set P , because
a pivot picked in a sparse region would produce a shallow subtree - when most
objects are far away from a pivot, they get assigned to other pivots. If, on the
other hand, the region is dense, any pivot selected will lead to a deep subtree,
since many objects are closer to it than to the other pivots.

Figure 3.3 gives an example of objects in 2-dimensional space and the corre-
sponding tree produced by the bulk-loading algorithm with k = 3. In the first
step, the algorithm picks three objects 01,02,03 as pivots at random and creates
corresponding clusters. Clusters containing more than k objects are recursively
processed and form subtrees. For example, in the cluster around oi, three new
pivots are selected (namely oi, 04,05), where the pivot oi is inherited from the

no SIMILARITY SEARCH

Figure 3.3. An example of the first phase of bulk-loading algorithm with the resulting tree.

Upper level. Note the resulting tree confirms the above theory about sparse and
dense regions: the individual subtrees are not of equal depth. Objects 03,03,03
are identical because pivots are inherited from upper levels.

The bulk-loading proceeds to the next phase if subtrees resulting from the
first stage are of different heights, i.e., the tree is unbalanced. The following
two techniques are applied to resolve such a problem:

• Underfilled nodes are reassigned to other subtrees and corresponding pivots
deleted from the set P.

• Deeper subtrees are split into shallower ones and the newly obtained roots
inserted into P to replace the original root nodes of deeper subtrees.

An underfilled node is one which contains fewer items than the minimum oc-
cupation, minimum occupation being the second parameter of the bulk-loading
algorithm.

In the example shown in Figure 3.3, the first heuristics detects underfilled
nodes under objects o[and 09. These objects are deleted and reassigned to
their closest pivots 04 or og, respectively. The latter technique reveals different
depths in tree branches. The subtrees rooted in nodes oi and 03 are taller,
thus they are split into new subtrees rooted in 04,05,03, OS^OQ, and 07. More
specifically, the pivots oi and 03 are replaced with 04,05,03, OS^OQ.^ 07 in the
set P. Finally, the bulk-loading algorithm creates a supertree over the set P
(see Figure 3.4). Note that the objects 04,03,02 are selected as pivots in the
supertree.

Experiments by [Ciaccia and Patella, 1998] reveal that the bulk-loading algo-
rithm builds the M-tree with fewer distance computations than does the standard
M-tree insertion procedure. I/O costs are also much lower with the bulk-loading

Centralized index structures 111

root ^ (Ü

00

CD
O4 O5 O3 Og Og O2 O7

Figure 3.4. The example after the second phase of the bulk-loading algorithm.

procedure, mainly due to the massive use of internal memory. As for search effi-
ciency, the M-tree built using the bulk-loading algorithm provides only slightly
better performance than an M-tree built with traditional insertion.

In the following, we describe an optimization technique that further speeds
the building process. The merit of this method, also proposed by [Ciaccia
and Patella, 1998], lies in the way it uses pre-computed distances according to
Lemma 1.1 in Chapter 1. After the initial phase of the bulk-loading algorithm,
we have a set of pivots P and corresponding subsets P i , . . . , P/.. The algorithm
is applied during the recursive call on each subset. Assume that the algorithm
processes the subset Pi. At this point, we know all distances between the pivot
pi and objects o G Pi, because these distances have been computed during
the initial clustering. In the next step, a new set of pivots is chosen and the
other objects must be clustered, i.e., we have to find the nearest pivot for each
o G Pi. Suppose that pi^N is the nearest pivot for the object oi obtained so far,
and the distance from Oi to another pivot pij has to be evaluated. Since we
know the distances d(pi, Oi) and d{pi^pij) (from the previous clustering), we
can establish a lower bound on the distance d{pij, ô) by following Lemma 1.1
(pg. 29):

\d{pi,Oi) - d{pi,pij)\ < d{pij,Oi).

If the distance to the current nearest pivot d{pi^Ni oi) is less than our lower
bound, we can safely leave off computing d{pij, Oi), because in the worst case,
it will equal d{pi^N^ oi) and cannot be less. This optimization cuts the number
of distance computations in the bulk-loading algorithm by 11%. By exploiting
pre-computed distances to multiple pivots, tests conducted by the same authors
on clustered datasets showed an increased savings ranging up to 70%, with a
mean value of 20%.

112 SIMILARITY SEARCH

1.3 Multi-Way Insertion Algorithm
Another extension to M-tree insertion algorithms with the objective of build-

ing more compact trees was proposed in [Skopal et al., 2003]. The difference
between the bulk-loading procedure and this approach is in their respective
dynamic capabilities: The bulk-loading algorithm assumes static data collec-
tions while the multi-way insertion algorithm is able to deal with dynamically
changing data and in this way is closer to the original insertion algorithm of the
M-tree.

The original insertion algorithm of the M-tree can be seen as a single-path or
"single-way" insertion, because it traverses the tree along exactly one branch.
In this way, exactly h nodes are accessed, where h is the height of the tree.
The single-way insertion heuristics is designed to keep building costs as low
as possible, and within this limitation tries to select a leaf node for which the
increase in covering radii is zero or minimum. However, [Skopal et al., 2003]
point out that the technique behaves very locally and the leaf selected may not
be the most convenient. Their priority is to choose the most convenient leaf
node in every situation and they propose procedure we now describe.

Before inserting a new object ON, a point query R(ON^ 0) is issued. For all
leaves visited, distances between ON and the leaf's pivots are computed. The
leaf node whose pivot is the closest to ON is then chosen to store the new object.
If no such leaf is found, single-way insertion is employed. This happens when
no leaf node covers the area of ON and the search algorithm terminates empty
before reaching a leaf. The heuristics behaves more globally because it inspects
more nodes, naturally increasing I/O costs.

Comparison experiments testing the single and multi-way insertion algo-
rithms by [Skopal et al., 2003] show multi-way insertion requires about 25%
more disk accesses than the single-way algorithm and nearly 40% more accesses
than the bulk-loading algorithm. These higher I/O costs also lead to higher CPU
costs as measured by distance computations. Because multi-way insertion de-
scends the tree using multiple branches, more pivots are compared against the
inserted object, and thus more distance computations must be performed. As
for query performance, trees built by multi-way insertion execute queries with
15% fewer disk accesses on average. The number of distance computations
is nearly the same for range queries, but multi-way insertion produces a tree
needing about 10% fewer distance computations for nearest neighbor queries.

In summary, multi-way insertion supports higher utilization of nodes than
single-way insertion, thus producing more compact trees with fewer nodes. The
multi-way insertion algorithm is advantageous in applications where building
costs are not very important in comparison with query execution performance.
Since the savings are more significant for I/O than CPU costs, inexpensive
metric functions are preferable.

Centralized index structures 113

1.4 The Slim Tree
The objective of the Slim tree, introduced in [Traina, Jr. et al., 2000b], is to

reduce overlaps between node regions. In principle, the Slim tree is an extension
of the M-tree that speeds up insertion and node splitting and at the same time
it improves storage utilization. In particular, this technique is based on a new
node-splitting algorithm and a special post-processing procedure which helps
make the resulting trees more compact.

The structure of the S lim tree is the same as that of the M-tree, but the insertion
algorithm is modified as follows: Starting at the root node, the algorithm tries
to locate a suitable node to cover the incoming object. If none is found, the
node whose pivot is nearest the new object is selected. This is the first point of
difference from the M-tree which, in this situation, would select the node whose
covering radius requires the smallest expansion, not necessarily the nearest
pivot. When several nodes qualify, the Slim tree selects the one which occupies
the minimum space. This tie-breaker technique is a second difference from
the M-tree - M-trees choose the node whose pivot is closest to the new object.
This modified insertion strategy tends to fill insufficiently occupied nodes first,
and in this way defers splitting, boosts node utilization, and cuts the number of
tree nodes needed to organize a dataset. Based on the same mM_RAD_2 splitting
policy, an experimental comparison of M-trees and Slim trees confirms this
hypothesis and the results exhibit lower I/O costs for Slim trees, while keeping
the number of distance computations nearly the same for both the M-tree and
the Slim tree. This observation applies not only to the tree building procedure
but also to query execution.

The Slim tree also concentrates on reducing the relatively high building
costs of M-trees, due mainly to their node-splitting strategy - the complexity
of the mM_RAD_2 strategy is 0{n^), using 0{n?) distance computations. The
split algorithm presented in the Slim tree is based on constructing a minimum
spanning tree (MST) [Kruskal, 1956], which has been successfully used for
clustering. This algorithm needs 0{in?) distance computations and the total
execution time is 0{n^ logn). The MST splitting algorithm assumes a fully
connected graph consisting of n objects (acting as vertices) and n(n — 1) edges,
where each edge is given a weight equal to the distance between a pair of
connected objects. The algorithm proceeds according to the following steps:

1 Build the minimum spanning tree on the full graph;

2 Delete the longest edge;

3 The resulting two subgraphs determine the content of the new nodes;

4 Choose as a pivot for each group the object whose distance to all the other
objects in the group is the shortest.

114 SIMILARITY SEARCH

The disadvantage of this procedure is that it does not guarantee the minimal
occupation of nodes, i.e., the split can be highly unbalanced. To obtain a more
balanced split, the authors suggest choosing the most appropriate edge from
among the longer edges in the MST. If no such edge is found, e.g., in the case
of a star-shaped dataset, the unbalanced split is accepted and the longest edge
is removed.

(a) (b) (c)

Figure 3.5. An example of a node split using the MST splitting algorithm.

Figure 3.5 shows the use of the MST splitting algorithm. In (a), a node
that is to be split is presented in the 2-D vector space. The newly-arrived object
causing the node to split is denoted by ô r and the pivot of this node is the object
Ol. The MST is built in (b) and the longest edge connecting two components
is represented by the dashed line. Finally, in (c), we show two resulting nodes
and their new pivots 02 and OQ.

Experiments in [Traina, Jr. et al., 2000b] compare the efficiency of the
new MST splitting strategy with the original mM_RAD_2 strategy. The results
show that tree building using the MST algorithm is at least forty times faster
than the original, while query execution time remains practically the same.
In this respect, the MST strategy is preferable, especially in highly dynamic
environments requiring many splitting operations.

1.4.1 Slim-Down Algorithm

The second major contribution of [Traina, Jr. et al., 2000b] is the definition
of the Slim-down algorithm, which is applied in the post-processing phase.
This method attempts to minimize the overlap of balls of sibling nodes and,
in the established terminology, tries to decrease the value of iht fat-factor (see
Section 10.4, Chapter 1) of the tree. The following example explains the idea.
Given a point query (i.e., the range query with r = 0), the search procedure
gradually enters all nodes whose regions contain the query object. By reducing
the overlap between them (making the balls smaller), we decrease the probabil-
ity that a point query hits several nodes at the same level. See Figure 3.6a, where

Centralized index structures 115

we are searching for object 03. In this example, the search must enter both the
nodes, because 03 is contained in their regions. If the nodes are grouped as seen
in Figure 3.6b, the search algorithm looking for 03 will visit only one node.

Figure 3.6. A Slim tree before slimming down in (a) and after in (b). The covering radii of
nodes are denoted with arrows.

The Slim-down algorithm can be characterized using the following three
steps (see Figure 3.6 for reference):

1 For each node AT at a given level of the tree, locate the object furthest from
the node's pivot. In the figure, this applies to the object 03 vis ä vis pivot 02.

2 Search for a sibling node M that also covers 03. If such a node M exists
and if it is not fully occupied, move 03 from node N to node M and update
the covering radius of A .̂

3 Steps 1 and 2 are applied to all nodes at the given level. If a single object is
relocated after a complete circuit using these two steps, the entire algorithm
is executed again.

By applying this algorithm to the tree in Figure 3.6, we move the object 03 from
node N into node M. Since 03 is the only object in N at distance d{os^ 02) from
the pivot 02, the covering radius of N shrinks, and no other region is enlarged.
As a result of the radius reduction, the object 03 passes out of the intersection
of the covering regions of nodes N and M and the search for 03 no longer
visits both nodes. From a terminological point of view, we have decreased the
fat-factor of the tree.

As a result of the Slim-down algorithm, some nodes can become poorly
occupied or even empty. The authors suggest objects in nearly empty nodes be
reinserted into the tree and their nodes deleted. Experiments confirm that this
strategy is effective and leads to more compact trees. Though the algorithm
was only applied to the leaves of the tree in [Traina, Jr. et al., 2000b], it can
also be used in principle on other levels. The idea of dynamic object relocation
can also be applied to defer splitting. During the insertion of an object into a
full node, a simple relocation of the furthest object from this node should be

116 SIMILARITY SEARCH

tried instead of executing a node split. This technique has already been studied
in the area of spatial access methods (e.g. R-trees in [Garcia et al., 1998]).

[Traina, Jr. et al., 2002] provide a thoroughgoing discussion of the properties
of the Slim-down algorithm and describe a possible deadlock in the algorithm.
In Step 3, we repeat the procedure when a single object is moved from one
node to another. Figure 3.7 depicts a situation in which the algorithm gets
stuck in an infinite loop. After the first full round, the objects 04,05, OQ move
to their neighboring nodes, as indicated by the dashed lines. Because of this
reorganization, the algorithm restarts and the same objects are reassigned back
to the original nodes (see the solid lines). In this way, the algorithm mingles
the three objects forever. To avoid such a situation, the authors suggest limiting
the number of times the algorithm is called to a certain value.

Figure 3.7. A cyclic move of object during the Slim-down algorithm elaboration. The covering
radii cannot be reduced.

The advantage of the Slim-down algorithm is that it reduces the overlap
between node regions, which helps improve total I/O costs. Trials on several
datasets show the algorithm decreases the number of disk accesses by at least
10%. Such performance improvements were observed not only for the MST
split strategy, but also for the original mM_RAD_2 strategy.

1.4.2 Generalized Slim-Down Algorithm

[Skopal et al., 2003] have modified the original Slim-down algorithm to
run also on the non-leaf nodes of a tree. It starts from leaf nodes, where the
algorithm follows the original Slim-down post-processing steps. Then index
levels of the tree are considered consecutively, terminating in the root. For each
pivot p in the non-leaf node A ,̂ the range query Ä(p, r^) is issued, where r^ is
the covering radius attached with respect to the pivot p. The query determines
a set of nodes whose regions entirely contain the query region. From this set,
the algorithm chooses the node M whose parent pivot pivot{M) is the closest
to the currently inspected (query) pivot p. If the inspected pivot p is closer to

Centralized index structures 111

nodeM
/ ' node M \

nodeN\ X' node N"-

r3
0
U.ol — —

nodeM nodeN

h 1.5

0.0

\A

\\
2.4

3.5

LgJ 1—1 1—1

0 ram 0 M

0
1 o.ol

0 2 ^ 0
rod

0 0 N

(a)

{ ^ ^ ,
nodeM nodeN

0 1.5

0.0

ki

0 1.2

2.5

N 1 1 LJ

r i
1.4

|o.o|

1 1
1.0

ml

B L—1

0
[am 0 0

1^ 0
0
[am

0 [Tm N N

(b)

Figure 3.8. (a) An M-tree before slim-down optimization, (b) the resulting tree after applying
the general slim-down.

pivot(M) than to its original parent pivot pivot{N), it is moved from node Â
to node M. If the entry containing pivot p determines the minimum bounding
region (ball) of TV, the covering radius of N is updated, i.e., reduced. This
sequence of steps is repeated at a given level until an entry is reallocated. Then,
the algorithm continues in the next upper level.

The generalized Slim-down algorithm reduces the covering radii of internal
nodes as well as leaf nodes. The number of nodes per level is preserved, because
node overflow (underflow) is not considered.

Figure 3.8a depicts a hypothetical M-tree structure and the corresponding
2-D representation of the indexed space. The root node contains two pivots
for nodes M and N. Node M navigates to leaf nodes represented by pivots

118 SIMILARITY SEARCH

Ol and 04. The remaining leaves are rooted in node N under pivots 02 and
03. Observe the large overlap between regions of nodes M and N, which
furthermore completely covers the regions around pivots 03 and 04. The fact
that eight of ten objects occur in the overlap results in a fat-factor of 0.8. After
applying the generalized slim-down algorithm, the tree significantly slims down
and the overlap of nodes M and N contains only two objects. The algorithm first
optimizes the leaf level and oio, the object furthest from pivot 03, is reallocated
to the node around oi. The same applies to the object os- Note that the covering
radius of node around oi has not been expanded and the original home nodes
of 08 and oio have been able to shrink their covering radii because their most
distant objects have been excised. Next, the upper level is reorganized and
nodes around 03 and 04 swap owners, leading to smaller covering radii for
nodes M and N.

The above example demonstrates very desirable behavior on the part of the
generalized slim-down algorithm. Its validity has been confirmed by experi-
ments. By applying this post-processing algorithm, tree building costs in terms
of disk accesses grow by about three times compared to the original M-tree
building procedure, and more than three times vis ä vis the bulk-loading al-
gorithm. Building costs in terms of distance evaluations were not provided
by the authors. Even though tree building costs increase, the search for range
queries is almost twice as fast, and about 3.5 times faster for nearest neighbor
queries. Such improvements were observed for both disk accesses and distance
computations.

In summary, the generalized slim-down post-processing technique is mainly
suitable for applications where insertions are not so frequent, and where the
search is the prevalent operation. This approach produces trees which are
tighter and more efficient than the slim-down algorithm by [Traina, Jr. et al.,
2002].

1.5 Pivoting M-tree
Very recently, [Skopal, 2004] has proposed an M-tree variant which combines

the M-tree with principles of the LAESA approach (see Sections 3 and 4 of
Chapter 2). In contrast to previously described extensions which minimize the
volume covered by regions around pivots, the aim of this technique is to bound
covering ball regions more tightly by additionally defining ring regions. A ring
metric region is defined similarly to a ball region but uses two radii Vmin^ ^max
and a pivot p. Such a ring region is restricted only to objects o within both radii.
I.e. , TTTim S ^[P-iP) S '^max'

The classic M-tree uses a set of pivots for clustering the data space into ball
regions and navigating the tree during search. In the PM-tree (Pivoting M-tree),
another set P of pivots (|P| = Up) is selected and a matrix of pre-computed
distances is defined. The matrix is divided into one-dimensional arrays related

Centralized index structures 119

to individual node entries. Specifically, a leaf node entry is defined as a tuple
(o, d{o^ cP)^ PD). The additional member of the tuple PD stands for an array
of ripd pivot distances, where the Z-th distance is PD[l] = d{pi^ o). Intuitively,
we store distances between database objects o and pivots pi G P. The value of
Upd is a parameter of the PM-tree access structure and must satisfy Upd ^ p̂»
because we simply do not have additional pivots. The entry of an internal node
is likewise modified as (p, r^^ d{p^ pP)^ ptr^ HR). However, HR is not an array
of distances but an array of rihr intervals defining ring regions. The value of
Uhr is the next parameter of the structure and naturally n^r ^ 'rip holds. The
l-th ring region HR[l] is defined as follows:

HR[l].min = min{{d{ojjPi)\\/oj G ptr})^

HR[l].max = max{{d{oj^pi)\ioj G ptr}).

Each ring region stored in HR contains all objects indexed in the subtree deter-
mined by ptr. The intersection of all ring regions and the ball region defined
by the covering radius forms a new metric region that bounds all the indexed
objects. As a result, the PM-tree's regions are smaller than an M-tree's, a nec-
essary condition for improving the search efficiency. Figure 3.9 illustrates the
differences between the M-tree and the PM-tree. Observe that the range query
posed no longer collides with the node's region in the PM-tree, thus the node
is not visited during the search.

' - ^ .

(a)

Figure 3.9. (a) A covering region of a node in an M-tree, (b) the same region trimmed by two
ring regions in PM-tree.

Extending the structure using additional pivots requires modifying the in-
sertion and search algorithms. During the insertion of a new object o^, the
HR array of each internal entry along the insertion path must be updated with
values d(oN^pi) for all pivots pul < rihr- When the new object is inserted
into a leaf, a new leaf entry is created and the respective PD array is filled in
with the values d{o]sf^pi)^\/l < Upd- In this way, several levels of the tree are
updated using distances d^ojsi^pi). However this does not necessarily require
reevaluation of these distances in descending levels, because, once computed,
distances are remembered for later use.

120 SIMILARITY SEARCH

This modification of the insertion procedure increases computational costs
by max{nkr^ n^d) distance function evaluations. Naturally, the node splitting
also involves some maintenance of the corresponding HR or PD arrays. In
the case of a leaf split, two new HR arrays of intervals are created by using all
leaf entries of the corresponding leaf nodes - the HR\l] ,min for the left node is
simply the minimum of PD [/] values of all objects in the left node. HR\f\ .max
is determined analogously, and the HR array for the right node is built. Splitting
a leaf node can get relatively expensive when rihr » '^pd^ which means that
we use more pivots in internal nodes than leaf nodes. This results in additional
distance computations when constructing HR arrays for leaf nodes, because
we do not remember all the necessary PD[l] values (/ > Upd)^ so they must be
evaluated again. Such obstacles are not connected with the splitting of internal
nodes because all internal nodes use the same value of rthr- After the split of
an internal node, the HR arrays of the two resulting nodes are created simply
by the union over all HR arrays of respective entries.

To fully exploit the additional information stored in the PM-tree, the search
algorithms must also be modified. Before processing any similarity query,
distances d[q^ pi) for all pivots pi such that / < maxirthr-, ripd) are determined.
Then the search procedure is started and the tree is traversed by considering
nodes whose metric regions coincide with the query region. The relevant entries
are determined not only by the standard ball-region test used in M-trees (see
Equation 3.1) but also by a new ring-region check in Equation 3.2. In particular,
the internal entry {p^r^^d{p^pP)^ptr^HR) is considered to be relevant to a
range query R{q^ r) if both the following expressions hold:

d (g , p) < r + r^ (3.1)

/\{d{q,pi) -r < HR[l].max A d{q,pi) + r> HR[l],min). (3.2)
1=1

For a leaf node entry, the standard covering radius test takes the form:

\{\d{q,pi)-PD[l]\<r).
1=1

Note that none of the previous checks employ any additional distance evalu-
ations and only previously computed distances are used. Refer to Figure 3.9
again, where an example range query is given. In the M-tree, the standard
covering radius check (see Equation 3.1) passes and the entry's subtree must be
visited. In the PM-tree, however, the additional ring-region checks prevent the
algorithm from entering the subtree. The ring region defined by pivot pi cannot
eliminate the entry from processing but the second ring around p2 does not
intersect the query region. As a consequence, we regard this entry as irrelevant

Centralized index structures 121

to the query. In other words, the query cannot find any qualifying object in the
entry's subtree, because it does not intersect the filled area in Figure 3.9b.

The ring-region check above must be incorporated into original search proce-
dures for range and nearest neighbor queries. For range queries, the adjustment
is straightforward - the new condition is combined with the original ball-region
check whenever applied. However, the search algorithm for nearest neighbor
queries must be completely redesigned, due to the use of a priority queue. The
specific modification to the kNN algorithm is described in [Skopal et al., 2005].

The authors compared their PM-tree access structure and the original M-tree
in a number of experimental trials. They studied performance for various values
of PM-tree parameters Uhr and n-pd- Considering the number of disk accesses,
the most economical PM-tree structure uses Upd = 0, which is quite intu-
itive because the space needed to store HR arrays of internal nodes is not so
overwhelming compared to the filtering effectiveness gained. In this way, the
PM-tree is able to save from 15% to 35% of disk accesses with respect to the
M-tree. The PM-tree with ripd = n/i^/4 needs about the same number of disk
accesses as the M-tree. Trees with higher values of ripd need more leaf nodes
to store the objects (because they must save the PD arrays), thus the search is
more expensive.

In contrast to the number of disk accesses, the increased number of dis-
tances stored in PD arrays positively impacts performance in terms of distance
computations. With ripd = rihr/4:, the PM-tree is up to 10 times faster than
the M-tree. The most promising setting for disk costs is also more efficient
than the M-tree with regard to distance computations, however improvements
are marginal, averaging around 30%. A rule-of-thumb for parameter tuning
in PM-trees is as follows: if disk costs need to be optimized, choose Upd as
small as possible; when, on the other hand, the distance function is expensive
to compute, the value of ripd should be higher. In any case, performance boosts
for Upd > Tihr/^ are not significant, thus the value of ripd should not exceed

1.6 The M+-tree
A recent proposal by [Zhou et al., 2003] suggests improving the performance

of M-trees by exploiting a concept called key dimension. The resulting structure,
labeled an M+-tree, inherits substantial properties from the M-tree - it is a
balanced tree implemented on disk memory. Its important difference can be
seen in a new partitioning strategy. The M+-tree has a larger fanout, achieved
by further partitioning each M-tree node into two subspaces called twin-nodes,
using the key dimension. Unlike the M-tree, which is able to index any metric
data, application of the M+-tree is limited to vector datasets employing the Lp
metric. In what follows, we briefly introduce the key dimension and discuss
the general properties of M'^-trees.

122 SIMILARITY SEARCH

The key dimension is defined as the dimension that most affects distances
among indexed data objects, that is the dimension along which the data objects
are most spread. For example, suppose data objects in a 2-D vector space are
positioned at various locations along the x axis, but appear to be a single object
from the vantage point of the y axis. In this case, the key dimension is the x axis.
In general, the following expression holds for two vectors (xi, 0:2,. • •, ^n) and
(yi, y2, • • •, J/n) and the key dimension Dkey'

\XD VDkeyl < Vi^l - yiY + (^2 - y2f + "' + {Xn-yn) key ^^key

On no account can the distance between any pair of objects computed using
only the key dimension be greater than the distance which takes all dimensions
into consideration. For convenience, we show the concept of key dimension
for the Euclidean distance. The same applies to any Lp distance on vectors, but
not to generic metric spaces.

The M+-tree modifies the internal node structure so that each entry uses two
pointers to twin-nodes instead of one - twin-nodes cover two disjoint subspaces
according to the key dimension principle. These two subspaces are defined by
two boundary values of the key dimension, the maximum value of the key
dimension for the left twin space and the minimum value for the right. Such
a partitioning improves filtering: the greater the gap between these two values
of the key dimension, the more effective the filter. The structure of an internal
node entry takes the form:

eft—twin^ ^Imax^ ^rminj P^"^right—twin) j

where p is a pivot and r^ is the corresponding covering radius around p. The
expression d(p, pP) represents the distance from p to its parent pivot p^. Finally,
D^ey is the number of the selected key dimension. The bounding values of the
key dimension are dimax and drmin for the left and the right twin subspaces,
respectively. The pointers navigate to roots of the corresponding twin subtrees.

Figure 3.10 illustrates differences between the M-tree and M+-tree struc-
tures. In part (a) of the figure, the M-tree's subspace, containing 10 objects, is
presented. A new object OM must be stored in this node and the split procedure
is executed. After the split, a new node is allocated and all objects including ON
are distributed between two nodes. Figure 3.10b, on the other hand, presents the
same situation, but respecting the M+-tree principles. Observe that the original
M-tree's node region is further split by means of two parallel lines. These lines
stand for the two values of the key dimension.

Now suppose a new object ON arrives and the split is initiated. All objects of
the affected node pair (twin nodes) plus the object ON are considered a single
set and the min-Max strategy (mM JIAD_2) is applied exactly as with the M-tree.
For the two new resulting nodes (regions), key dimensions are selected and the

Centralized index structures 123

^W^W^

^

H°H°HHIIIIBfflim
(a)

Figure 3.10. Comparison of (a) M-tree and (b) M"'"-tree partitioning.

regions further partitioned. Finally, we get four nodes from the original two.
Provided the same node capacity is used, an M+-tree typically has fewer levels
than the corresponding M-tree.

From a performance point of view, the M+-tree is slightly more efficient than
the M-tree. (See the performance evaluation in [Zhou et al., 2003]). The key
dimension filtering strategy enables greater pruning effects for range queries
with small query radii. For such queries, performance of M+ -trees is promising,
however, for larger query radii, it becomes practically the same as for the M-tree.
The performance boost for nearest neighbor queries is not clear-cut. In general,
the advantage of lower CPU costs for range queries is difficult to exploit, because
the search radius in nearest neighbor searches is initially high and decreases
only slowly. The sole advantage over M-trees lies in the shorter priority queue,
because the M+-tree stores only one of the twin-nodes. Due to the larger fanout
of the M+-tree, the priority queue can be shorter, thus, some processing time
can be saved for queue maintenance. In summary, this variation of the M-tree
provides moderate performance improvements. At the same time, it restricts
the application domain to vector datasets and Lp metric norms.

124 SIMILARITY SEARCH

To make the list of M-tree-like structures more complete, we briefly mention
a more efficient index structure called the BM+-tree [Zhou et al., 2005]. The
structure further extends the concept of single key dimension of M+-trees to
make use of two key dimensions, which define a binary hyperplane. This allows
a better approximation of the direction in which high-dimensional objects are
spread the most. The hypothesis behind is inherently the same: the more spread
objects are, the higher probability of not accessing both the twin nodes during
similarity queries evaluation. Despite the fact that BM+-trees offer higher
performance compared to M"*"-trees, they are still limited to vector spaces only.

1.7 TheM^-tree
In contrast to previously presented members of the M-tree family, which try

to improve performance of the M-tree in various respects and directions, this
final variant has different objectives. Specifically, the M^-tree is able to run
complex similarity queries as defined in Section 4.6 of Chapter 1.

The first attempt to extend the M-tree to run complex similarity queries
can be found in [Ciaccia et al., 1998b]. This approach supports the execution
of queries with multiple predicates using the same distance function. The
M^-tree by [Ciaccia and Patella, 2000a] further extends this basic idea and
accepts several distance functions. For example, consider the query: Find
images that contain a lion and the scenery around it like this. Assuming we
have an image database with keyword-annotated objects and color histograms,
this query involves both features. Using a keyword search, it is able to locate
images with lions and by comparing histograms it can find the required matching
scenery. Qualifying objects are then identified by using a scoring function
df, which takes as input distances to objects with respect to individual query
predicates.

Figure 3.11 illustrates the difference between nodes in the M-tree and in the
M^-tree. Since each object oi in the M^-tree can be characterized by more
than one feature value, e.g. Oi[l] and Oi[2], the leaf node structure is extended
to contain all the object's features as well as distances to respective parents.
Notice that every feature can use a different distance function. The internal
nodes are expanded by analogy, but additionally use separate covering radii for
each feature. In the figure, we also give a geometric illustration of the difference.
In the M-tree, all objects of a subtree rooted in ptr are sorted according to the
pivot and the covering radius is established. However, in the M^-tree, we have
multiple features for each object, so the transformation can be viewed as an
n-dimensional space and the subtree's region turns out to be a hypercube.

When a range query R{q^ r) is executed in M-trees, the tree is traversed from
its root, and branches are pruned by testing whether entries intersect the query
region. To this end, the lower bounds on distances between the query and objects
in the subtrees are computed. In the M^ -tree, the search procedure is very similar

Centralized index structures 125

Internal Entry: p, r; dCpi.p") ptr. P,[l] r;[l] d,(p,[l],p'[l]) p,[2] r;[2] 4(p,[2],p'[2]) ptr,

Leaf Entry: | o, |d(0|,pi)

d(o„pi)

(a)

|0|[l]|d,(o,[l].R[l])|o,[2]|d,(o,[2].pl2])|

s Q"

73*

'\[2]l
°0 i

%, °^3

°04

' >"
Pi[lLPi[2] ^^ d,(oJl],R[l])

(b)

Figure 3.11. Node structure of (a) M-tree and (b) M -tree. Below the representation of node's
covering region.

and the lower bounds are assessed as follows: We compute the lower bound for
every feature, specifically '^i^min{\di{q[i],pP[i]) - di{p[i]^pP[i])\ - r^[i],0).
These lower bounds are then combined together using the scoring function d/,
and only those entries for which the scoring function is maximally r are visited.
The algorithm for kNN queries uses an analogous strategy.

The authors compared the M^-tree with the sequential scan and Fagin's Ao
algorithm, outlined in Section 4.6 of Chapter 1. An image collection containing
two features, the image name and its color histogram, was chosen and several
kNN queries executed. To implement Fagin's algorithm, two M-trees were
built, one for each feature. The experiments revealed that the M^-tree is able to
save about 20% in distance computations and 30% in I/Os compared to the ^o
algorithm. Moreover, the performance of the Ao algorithm in terms of block
accesses decreases for high values of k beyond the sequential scan. On the
other hand, the M^-tree only reaches this sequential scan threshold.

2. Hash-based metric indexing
In tree-like indexing techniques, search algorithms traverse trees and visit

nodes which reside within the query region. This represents logarithmic search
costs in the best case. Indexes based on hashing, sometimes called key-to-
address transformation paradigms, contrast by providing a direct access to
searched regions with no additional traversals of the underlying structure. In
this section, we focus on hash-based techniques. For example, AESA variants
can be classified as hashing techniques, because they are capable of direct ac-

126 SIMILARITY SEARCH

Separable set 3

Separable set 2

Separable set 1

Separable set 0
Exclusion set

(a) (b)

Figure 3.12. (a) The bps split function and (b) the combination of two bps functions.

cess. But they are restricted to main memory. In the following, we present an
interesting hash-based index structure that supports disk storage.

2.1 The D-index
The Distance Index (D-index) is a multi-level metric structure, based on

hashing objects into buckets which are search-separable on individual levels
- see Section 5.3 in Chapter 1 for the concept of partitioning with exclusion.
The structure supports easy insertion and bounded search costs because at most
one bucket per level need to be accessed for range queries with a search radius
up to some predefined value p. At the same time, the use of a pivot-filtering
strategy described in Section 7.6 of Chapter 1 significantly cuts the number of
distance computations in the accessed buckets. In what follows, we provide an
overview of the D-index, which is fully specified in [Dohnal et al., 2003a]. A
preliminary idea of this approach is available in [Gennaro et al., 2001].

Before presenting the structure, we provide more details on the partitioning
principles employed by the technique, which are based on multiple definition of
a mapping function called the yo-split function. An example of a p-split function
named bps (ball-partitioning split) is illustrated in Figure 3.12a. With respect
to the parameter (distance) p, this function uses one pivot p and the median
distance dm to partition a dataset into three subsets. The result of the following
bps function uniquely identifies the set to which an arbitrary object o e V
belongs:

{ 0 if d{o,p) < dm- p
1 if dlo,p)> dm+ p (3.3)

— otherwise
In principle, this split function uses the excluded middle partitioning strategy
described in Section 5.3 of Chapter 1. To illustrate, consider Figure 3.12 again.
The split function bps returns zero for the object 03, one for the object oi (it lies in

Centralized index structures 127

the outer region), and '—'for the object 02. The subset of objects characterized
by the symbol '—'is called the exclusion set, while the subsets characterized
by zero and one are separable sets. In Figure 3.12a, the separable sets are
denoted by S]^^^(V), S^^{^{V) and the exclusion set by S'Jl^(P). Recall that V
is the domain of a given metric space. Because this split function produces two
separable sets, we call it a binary bps function. Objects of the exclusion set are
retained for further processing. To emphasize the binary behavior. Equation 3.3
uses the superscript 1 which denotes the order of the split function. The same
notation is retained for resulting sets.

Two sets are separable if any range query using a radius not greater than p
fails to find qualifying objects in both sets. Specifically, for any pair of objects
Oi and Oj such that bps^'^{oi) = 0 and bps^'^{oj) = 1, the distance between oi
andoj is greater than 2p, i.e., (i(oi,Oj) > 2p. This is obvious from Figure 3.12a,
however, it can also be easily proved using the definition of the bps function and
applying the triangle inequality. We call such a property of p-split functions
the separable property.

For most applications, partitioning into two separable sets is not sufficient,
so we need split functions that are able to produce more separable sets. In the
D-index, we compose higher order split functions by using several binary bps
functions. An example of a system of two binary split functions is provided in
Figure 3.12b. Observe that the resulting exclusion set is formed by the union of
the exclusion sets of the original split functions. Furthermore, the new separable
sets are obtained as the intersections of all possible pairs of the original separable
sets. Formally, we have n binary bps^'^ split functions, each of them returning
a single value from the set {0,1, —}. The joint n-order split function is denoted
as bps^'^ and the return value can be seen as a concatenated string of results
of participating binary functions, that is, the string b = (bi^... ^bn), where
bi e {0,1, —}. In order to obtain an addressing scheme, which is essential for
any hashing technique, we need another function that transforms the string b
into an integer. The following function (b) returns an integer value in the range
[0..2^] for any string b e {0,1, - } ' " :

^ r [biM...., bnh = EU ^""-^bj, if Vj bj ^ -
^ ^ \ 2^, otherwise

When no string elements are equal to '—', the function (b) simply treats fe as a
binary number, which is always smaller than 2^. Otherwise the function returns
2^.

By means of p-split functions and the (•) operator, we assign an integer
number i (0 < i < 2^) to each object o E V and in this respect, group
objects from P in 2^ + 1 disjoint subsets. Considering again the illustra-
tion in Figure 3.12b, the sets denoted as '̂ rooi' * f̂oil' *̂̂ ^̂̂ ^̂ ^ mapped to
S'̂ Q'P ̂ Mp S'?2p S?^^ (i.e., four separable sets). The remaining combinations

128 SIMILARITY SEARCH

SlQ.yS'^^l^^^^ are all interpreted as a single set Äĵ 'ĵ (i.e., the
exclusion set). Once again, the first 2^ sets are called separable sets and the
exclusion set is formed by the set of objects o for which {bps^'^{o)) evaluates
to 2^.

The most important fact is that the combination of split functions also satisfies
the separable property. We say that such a disjoint separation of subsets, or
partitioning, is separable up to 2p. This property is used during retrieval,
because a range query with radius r < p never requires accessing more than
one of the separable sets and, possibly the exclusion set.

Naturally, the more separable sets we have, the larger the exclusion set is.
For a large exclusion set, the D-index allows an additional level of splitting by
applying a new set of split functions to the exclusion set of the previous level.
This process is repeated until the exclusion set is conveniently small.

The storage architecture of the D-index is based on a two dimensional array of
buckets used for storing data objects. On the first level, a bps function is applied
to the whole dataset and a list of separable sets is obtained. Each separable set
forms a separable bucket. In this respect, a bucket represents a metric region
and organizes all objects from the metric domain falling into it. Specifically,
on the first level, we get a one-dimensional array of buckets. The exclusion set
is partitioned further at the next level, where another bps function is applied.
Finally, the exclusion set on the final level, which will not be further partitioned,
forms the exclusion bucket of the whole multi-level structure. Formally, a list of
h split functions {bps^^'f", öps^ ' '^ , . . . , bps^'^'^) forms 1 + J^lLi 2"̂ ^ buckets
as follows:

^1 ,0? ^ 1 , 1) • • • 5 ^ 1 , 2 ^ 1 - 1

^2 ,0? ^2 ,1? • • • 5 ^ 2 , 2 ^ 2 - 1

In the structure, objects from all separable buckets are included, but only the
Eh exclusion bucket is present because exclusion buckets Ei^h are recursively
repartitioned on levels i + 1. The bps functions of individual levels should be
different but must employ the same p. Moreover, by using a different order of
split functions (generally decreasing with the level), the D-index structure can
have a different number of buckets at individual levels. To deal with overflow
problems and file growth, buckets are implemented as elastic buckets and consist
of the necessary number of fixed-size blocks (pages) - basic disk access units.

In Figure 3.13, we present an example of the D-index structure with a varying
number of separable buckets per level. The structure consists of three levels.
Exclusion buckets which are recursively repartitioned are shown as dashed rect-
angles. Obviously, the exclusion bucket of the third level forms the exclusion
bucket of the whole structure. Observe that the object 05 falls into the exclusion

Centralized index structures 129

1̂ level: 4 buckets

2^ level: 4 buckets

3̂ level: 2 buckets

exclusion bucket

1 level in 2-D:

1
o

•

^
•

4

o 1

1 * 1
•

1̂.

•

2
1 'X I

O

^

•
•

• •
• •

^

1 4 • •
1 O '

1 • • O • ,

^

I • ^ '
• • o '

• 1

Figure 3.13. Example of D-index structure.

set several times and is finally accommodated in the global exclusion bucket.
The object 04 has also fallen into the exclusion bucket on the first level, but it is
accommodated in a separable bucket on the second level. Below the structural
view, there is an example of the partitioning applied to the first level.

2.1.1 Insertion and Search Strategies

In order to complete our description of the D-index, we present an insertion
algorithm and a sketch of a simplified search algorithm. In Figure 3.14, the
algorithm inserts a new object ON into the D-index access structure specified
as DP{X, ^ 1 , ^2? • • • ? ^/i)» where rrii denotes the order of the split function.
Obviously, ojsf belongs to the database X, which is a subset of the domain V of
the metric space. Starting with the first level, the algorithm tries to accommodate
ojsf in a separable bucket. If a suitable bucket is found, the object is stored in it.
If it fails for all levels, the object ON is finally placed in the exclusion bucket

130 SIMILARITY SEARCH

Insertion Algorithm
tor i = 1 to h do

if {bps'l'''^(ON)) <2^^ then

exit
endif

enddo
ON ^ Eh

Figure 3.14. Insertion algorithm of the D-index.

E^. In any case, the insertion algorithm selects exactly one bucket in which
to store the object, and no other buckets are accessed. As for the number of
distance computations, the D-index needs X^̂ ^̂ rrii distance computations to
store a new object, assuming it is inserted into a separable bucket on the j-th
level.

Given a range query Q = R{q, r), where q is from the metric domain V,
r < p and TZ{Q) denotes the query region, a simple algorithm can be used to
execute the query as depicted in Figure 3.15. The function {bps^^'^{q)) always

Search Algorithm
for i = 1 to /i do

return all objects o such that o e TZ{Q) fl B^ .^ ^^^,0. .,

enddo
return all objects o such that o e TZ{Q) H E^

Figure 3.15. Simple search algorithm for range queries.

gives a value smaller than 2^*, because the parameter p is set to zero in this
function call. Consequently, exactly one separable bucket for each level i is
determined. Objects of the query response set cannot be in any other separable
bucket on level z, because the query radius r is not greater than p(r < p) and the
buckets are separable up to 2p. However, some may be in the exclusion zone -
the algorithm above assumes that exclusion buckets are always accessed. For
that reason, all levels are considered, and the global exclusion bucket E^ is also
accessed. The execution of this algorithm requires h+1 bucket accesses, which
forms the upper bound of a more sophisticated algorithm described in [Dohnal
et al., 2003a]. The advanced algorithm is also not limited by the size of the query
radius, i.e., r < p. A detailed description of the general range search algorithm

Centralized index structures 131

as well as its extension for nearest neighbor queries is available in [Dohnal et al.,
2003a].

2.2 The eD-index
Up to now, we have only considered similarity range and nearest neighbor

queries. Some work in the field of hash-based index structures has also been
done for similarity joins. In the following, we describe indexing techniques
which support similarity self-joins in metric spaces, as defined in Section 4.4 of
Chapter 1. In principle, there are two types of algorithm for answering similarity
joins. The first category concerns methods based on the range search, while the
second category is formed by specialized algorithms.

Given a similarity self-join request S'J(//), algorithms based on the range
search strategy employ a metric access structure that supports range queries to
retrieve qualified pairs of objects, i.e., pairs (oi^Oj) such that d{oi^Oj) < ji.
The idea is to perform n range queries, one for all objects in the database, using
the same search radius r = /i. As a result, it is quite straightforward to define
a specific algorithm for any access structure presented in Chapter 2.

The bounded search costs and excellent performance for small similarity
range queries of the D-index, confirmed by experiment, formed the chief moti-
vation to employ this structure for similarity joins, as well - in typical applica-
tions, the join parameter ji is small. More details about experimental evaluation
of the D-index are given in Section 3. The algorithm based on range queries is
proposed in [Dohnal et al., 2002] and given in Figure 3.16.

The second category of similarity self-join algorithms is mainly comprised by
specialized algorithms tailored to the specific needs of individual applications.
For example, [Gravano et al., 2001] proposed a solution of similarity joins over
string collections on top of a commercial database system. The core idea of
such approaches is to transform the difficult problem of approximate string
matching into some other search problem for which an efficient solution exists,
e.g. query processing in a relational database system. [Dohnal et al., 2003b]
have proposed a general solution, which is based, by contrast, only on the
metric space postulates. The suggested structure, called an extended D-index
(eD-index), is able to execute a similarity self-join over any data collection from
a metric space domain.

As the titles suggest, the partitioning principles of the eD-index and D-index
are very similar. The core idea behind the eD-index is to modify the original
p-split function so that the similarity self-join can be executed independently
in individual buckets. The exclusion set produced by the modified function
overlaps with the corresponding separable sets by a predefined margin (distance)
e - see Figure 3.17 for illustration. Objects within the overlap are replicated,
that is they belong to both the exclusion set and the corresponding separable
set. This principle, called exclusion set overloading, ensures there is always

132 SIMILARITY SEARCH

Range Query Join Algorithm
#for every D-index level
for i = 1 to /i do

#for every separable bucket Bij on the level i
for j^O to 2̂ ^ - 1 do

#for every object q in the bucket Bij
forall q in Bij do

execute S = R{q^ JJL)
^o e S : add the pair {q^ o) to the response set

enddo
enddo

enddo
access the exclusion bucket
#for every object q in the bucket E^
forall q in E^ do

execute S = R{q^ fi)
\/o e S : add the pair {q^ o) to the response set

enddo

Figure 3.16. Algorithm for similarity self-join queries based on range queries.

(a) (b)

Figure 3.17. The modified hps split function: (a) original p-split function; (b) modified p-split
function.

a bucket in which any qualifying pair (x, y) {d{x^ y) < e) can be found. In
the eD-index, the overloading principle is implemented as a modified insertion
algorithm of the D-index. In Figure 3.18, you can observe the adjustment which
employs the original hps function. The only difference lies in the stop condition
applied when the inserted object does not fall into the overlapping region of

Centralized index structures 133

eD-index Insertion Algorithm
for i =: 1 to /i do

\f{hps('''f'{oN)) <2^^ then

if(fep5f^'^+'(oAr)) <2^^ then
exit

endif
endif

enddo
ON ^ Ek

Figure 3.18. Insertion algorithm for the eD-index.

window^
d^jLi

•-e—o o ^» • f • • f ocp o o 00 0 0 0 >-
p O l 0 2 0,o O h i " ^ - < \ ^ - ^ 0„d(p,Oj)

Figure 3.19. The SHding Window algorithm.

the exclusion set and a separable set. Otherwise, the algorithm proceeds to the
next level where the copy of the new object is stored. As explained later, a
special algorithm is used to find these buckets efficiently and avoid retrieving
duplicates. In this way, the eD-index speeds up the evaluation of similarity
self-joins.

2.2.1 Similarity Self-Join Algorithm with eD-index

The basic strategy of the similarity self join with the eD-index can be char-
acterized as follows: Execute the join query independently in every separable
bucket on all levels of the eD-index and additionally on the exclusion bucket of
the entire structure. This approach is correct due to the exclusion set overload-
ing principle - every object of a separable set which can make a qualifying pair
with an object of the exclusion set is copied into the exclusion set. Finally, the
partial results are concatenated to form the answer.

The similarity self-join algorithm in individual buckets applies a sliding
window approach - the idea is outlined in Figure 3.19. First, all objects of
a bucket are ordered with respect to the pivot p. This pivot is one of the pivots
used in a p-split function applied to partition the metric space into separable
sets. Next, we define a sliding window of objects as an interval [o/o, o^i]. The
algorithm moves the sliding window over the ordered list of objects from left

134 SIMILARITY SEARCH

to right until all objects are examined. All pairs of objects at each window
position are considered and qualifying pairs are reported. The length of the
window is limited to the distance JJL, specifically d(p, Ohi) — d{p, oio) < yu. The
specification of the algorithm is given in the pseudocode in Figure 3.20. The
pivot-based strategy, i.e., a strategy taking pre-computed distances to all other
pivots into account, is also employed because it significantly cuts the number
of distance computations. In the figure, it is characterized by the function
PivotFilter,

Sliding Window Algorithm
response <r- 0
lo=l
for hi = 2 ton do

#move the lower boundary up to preserve window's width < fi
increment lo while d^Ohi^p) — d{oio^p) > IJL
#for all objects in the window
for j = lo to hi — 1 do

apply the pivot-based strategy
if not Pivot Filter {) then

compute d{ojjOhi)
if d{oj^Ohi) < 11 then

add the pair to the result
{oj^Ohi) —> response

endif
endif

enddo
enddo

Figure 3.20. Sliding Window Algorithm.

Two important issues must be considered in the application of the exclusion
set overloading principle. The first concerns the problem of possible duplicate
pairs in the result of the join due to copies of objects reinserted into exclusion
sets. Suppose, for example, that one of the separable buckets on the first level
has a qualifying pair of objects. However these objects also fall into the overlap
with the exclusion bucket. Consequently, they are both examined on the second
level and may both fall once again into a common separable bucket. When such
buckets are (independently) processed, identical pairs are reported several times.
The authors propose a special "coloring" technique which marks duplicates of
objects. Specifically, each level of the eD-index has a unique color assigned.

Centralized index structures 135

1 level: 4 buckets

2 level: 4 buckets
green [

3 level: 2 buckets
bluelH

4 level: 2 buckets
black

5 level: 2 buckets

6 level: 2 buckets

exclusion bucket

o Pn 1 1

1 j

\ 1 / \̂ \ 1 / \ 1 / \ 1 /

A #
1

1

IL

"731:7

Figure 3.21. Coloring technique applied in the eD-index.

and every duplicate of an object receives all colors of preceding levels on which
the replicated object is stored.

Figure 3.21 provides an example of an eD-index structure with 4 objects,
represented by a circle, square, triangle, and hexagon. The circle, for example,
is replicated and stored at levels one, three, and six. The circle at the first level
has no color because it is the original, while the circle at the third level is red
colored, because it has already been stored at the first (red) level. Furthermore,
the circle at level six receives the red and blue colors, because it is stored at
the corresponding levels. The other objects are analogously marked by their
respective colors. Observe that the exclusion bucket has no specific color be-
cause no additional levels follow, so the objects accommodated there cannot be
further duplicated.

Before the search algorithm examines a pair, it decides whether objects of
the pair share a color. If they have at least one color in common, the pair

136 SIMILARITY SEARCH

is not considered. The concept of sharing a color by two objects means that
these objects are also stored together at the same (previous) level, thus they
have already been checked in a bucket of that level. Observe the circle and
the hexagon stored in the same bucket on level six. Even though they form a
qualifying pair, they are not reported because they share the color red. This is a
consequence of the fact that both these objects are also stored at the first level.
Thus, if they form a qualifying pair, they must have already been reported.

The second issue concerns the value of parameter p, which is constrained
by e < 2p. If e > 2p is true, some qualifying pairs cannot be examined
by the algorithm, because the replication is not performed among separable
sets. For example, assume objects Oi and Oj located in different separable
sets - the separability property ensures that d{oi^Oj) > 2p. However, the
expression e > 2p implies that a similarity join with p. > 2p can also be issued.
The direct computation of distance between o ,̂ Oj reveals that d{oi^ Oj) < p.
Unfortunately, the exclusion set overloading principle replicates objects in the
overlap of the exclusion set and a separable set. As a result, the objects o ,̂ Oj
cannot fall into the same bucket. Consequently, the separable sets are not
contrasted enough to avoid omitting some of the qualifying pairs.

The limitation on the value of e (e < 2p) seems to be the main drawback
of the eD-index approach. However, the typical task of a similarity self-join is
to find pairs of very close objects, which implies relatively small values for p.
Thus, in reality, this issue is not that restrictive.

3. Performance Trials
In previous sections, we have surveyed various centralized (single computer)

access structures, storing indexed data on a disk. In this section, we report our
experience with two typical representatives of such methods in experimental
trials, namely the M-tree and the D-index. To test the M-tree, we made use of
the publicly available implementation [Ciaccia et al., 1997a]. For the D-index,
we have used the implementation provided by D-index's authors. To render
the results comparable, we used the same block size in both the M-tree and the
D-index.

We undertook three independent sets of experimental trials, each motivated
by its own research question. They involved:

1 a comparison of the M-tree with the D-index to highlight the advantages
and disadvantages of tree-like versus hash-based approaches,

2 a study of the effect on search costs of processing different types of queries,
and

3 a study of the applicability of centralized solutions to growing data archives,
that is the problem of scalability.

Centralized index structures

Frequency VEC Frequency

0.008

li

Frequency

137

l _ _ J I i _

0 2,000 4,000 6,000 8,000 0.2 0.4 0.6 0.8 0 200 600 1.000

Figure 3.22. Distance densities for VEC, URL, and STR.

Additional details on the performance evaluation can be found in [Dohnal,
2004].

3.1 Datasets and Distance Measures
In order to make the experimental evaluation as objective as possible, we

use three different datasets, each differing significantly in terms of its distance
distribution. The specific datasets used were:

VEC 45-dimensional vectors of image color features compared by the quadratic
distance measure reflecting correlations between individual colors.

URL Sets of URL addresses visited by users during work sessions with the
Masaryk University information system. The distance measure applied is
based on the similarity of sets, specifically using Jaccard's coefficient.

STR Sentences of a Czech language corpus compared using an edit distance
measure that counts the minimum number of insertions, deletions or substi-
tutions to transform one string (sentence) into another.

For illustration see Figure 3.22, showing the distance densities for all our
datasets. Notice that VEC is practically normally distributed, whereas the
distribution of URL is discrete and that of STR is highly skewed.

In all our experiments, the query objects are not necessarily chosen from
the indexed datasets, but follow the same distance distribution. Search costs
were measured in terms of distance computations and block reads (number of
disk accesses), which is sufficient to correctly estimate CPU and I/O costs.
The Loo distance measures used in the pivot-based filtering of the D-index are
deliberately ignored, because according to our tests, the costs of computing
such distances are several orders of magnitude smaller than the costs needed
to compute any of the distance functions applied in the experiments. Since
the query execution costs very much depend on the specific instance of the

138 SIMILARITY SEARCH

Distance Computations

12,000

5 10 15 20 25 30

Searcli radius (x100)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Searcli radius

0 10 20 30 40 50 60 70

Searcli radius

5 10 15 20 25 30

Search radius (x100)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Search radius

Page Reads

140

0 10 20 30 40 50 60 70

Search radius

Figure 3.23. Comparison of the range search efficiency in the number of distance computations
(above) and block accesses (below) for VEC, URL, and STR.

query object, the reported cost values are the mean values obtained from fifty
executions of queries with different query objects and search selectivity held
constant, i.e., with queries using the same search radius or the same number of
nearest neighbors.

3.2 Performance Comparison
In the first group of experiments, we focus on three different approaches,

namely the M-tree, D-index, and the sequential scan (SEQ) which serves us as
a baseline - the sequential scan forms the basic cost model both in terms of
disk accesses and the number of distance function evaluations. Obviously, the
sequential file stands for the most economical organization with respect to the
disk space, but needs the maximum number of distance comparisons to evaluate
a query. The M-tree and D-index are, respectively, appropriate representatives
for tree-based and hash-based categories of similarity search indexes. The
results of experiments for range queries are reported in Figure 3.23. All datasets
consist of about 11,000 objects. The maximal query radii were selected to keep
the response set size at about 20% of the database.

For all queries tested, the M-tree and D-index required fewer distance com-
putations than the sequential scan, which is desirable and is in fact a prerequisite
for any index organization. We can also observe that the D-index outperforms

Centralized index structures 139

the other structures in many situations, especially when queries with small se-
lectivity are posed - the effectiveness of the pivot-based filtering inside the
D-index strongly depends on the data distribution and the query size. Because
of the normal data distribution of the vector dataset, the pivot-based filtering in
the D-index becomes less efficient for query radii greater than 2,500. Where
many pairs of objects are at such a distance, the pruning effect is diminishing.
Observe that, with the URL dataset, the D-index is competitive for just a few
small query radii. In general, we observe that the highly skewed and discrete
distribution together with the fixed hashing schema of the D-index hands an
advantage to the fully-adaptive M-tree, especially for queries with higher radii.
The authors of the D-index also observe that the problem of selecting a good
pivot is more difficult for discrete distributions, where an object different from
any other object can easily be promoted without actually being a good pivot.

The global increasing trends in the number of disk page accesses are merely
the same as those for distance computations. Observe that the sequential scan is
often more efficient than the sophisticated M-tree, because the M-tree typically
needs twice the disk space to store the same data as the SEQ. As a result, it is
usually worse than the linear scan, since the ratio of wasted disk space markedly
influences I/O search costs. This drawback is addressed in some extensions of
the M-tree, but the improvements are only marginal. In contrast, the D-index is
very economical of space and needs slightly more disk memory than the SEQ.
Only for some queries from the VEC dataset does the M-tree require fewer
disk reads than the SEQ, but the D-index almost always remains beneath the
linear scan threshold for this data. However, elevated disk costs can be tolerated
when an index structure saves many distance evaluations by a distance function
very demanding of CPU time. Of course, I/O costs become crucial when the
distance function is very easy to compute. In this respect, the hashing schema
of the D-index is more promising than that of the M-tree.

Figure 3.23 reveals another interesting observation. To run an exact-match
query, i.e., a range search with r = 0, the D-index needs to access only one disk
page. Compare, in the same figure, the number of block reads for the M-tree.
They are one half that of the SEQ for vectors, practically equal to the SEQ for
the URL sets, and actually three times higher for the sentences. Note that an
exact-match search is important when a specific object must be eliminated - the
location of the deleted object forms the main cost. In this respect, the D-index is
able to manage deletions far more efficiently than the M-tree. The outcome of
the same test with r = 0 in terms of distance computations can be summarized
as follows: The D-index needed just twelve and five distance evaluations for the
VEC and STR datasets, respectively. Even for the URL collection, the D-index
performed better than the M-tree. In summary, the D-index is very efficient in
insertions or deletions of objects compared to the other techniques explored. It
is also the preferable type of organization for range queries with narrow radii.

140 SIMILARITY SEARCH

Distance Computations

12,000 I

STR Distance Computations

0 10 20 30 40 50 60 70
Search radius

I^.UUU

10,000

8,000

6,000

4,000

2,000

1 1 1

dindex
- mtree

seq

1 1 1

1

^

H

1

1 5 10 20 50 100
Nearest neighbors

0 10 20 30 40 50 60 70
Search radius

140

120

100

80

..-.i \.,
|_ dindex

mtree
L seq

1 5 10 20 50 100
Nearest neighbors

Figure 3.24. Comparison of the range search efficiency in the number of distance computations
(above) and block accesses (below) for the kNN search on STR.

3,3 Different Query Types
The objective of the second group of tests is to show that costs also depend

on various query types. Figure 3.24 shows results of experiments for range and
nearest neighbor queries. We use the STR collection, because the performance
contrast is most marked here. For the kNN queries, both indexes tested exhibit
more or less the same behavior and the greatest advantage of the D-index, the
fast processing of small queries, decreases. This reveals the fact that a kNN
query execution, even for small k, is very expensive and many unqualified data
objects must be inspected to get the result. The experiments also show that the
difference in search costs for fc = 1 and k = 100 is insignificant. However, the
D-index is still twice as fast as the M-tree as far as distance computations go,
and four times faster in terms of disk accesses.

We also evaluated similarity joins, probably the most demanding operation
even for small thresholds of //. Figure 3.25 shows results for the VEC and
STR datasets, again containing about 11,000 objects. In the figure, three algo-
rithms are compared. NL (nested loops) represents the naive approach, which
incrementally compares all object pairs against the join constraint fi. The RJ
(range join) algorithm is based on the D-index, and the OJ (overloading join)
algorithm uses the eD-index. For details of these algorithms, please refer to

Centralized index structures 141

Distance computations

1e+08

VEC

1e+07 fe- ̂ .—

1e+06 I /

100,000

10,000

I I I I r "

J I L_

NL •
RJ •
OJ •

300 600 900120015001800

Join query threshold

Distance computations STR

1e+08 fe I I I I I

1e+07

1e+06

100,000

10,000

0 5 10 15 20 25 30
Join query threshold

Figure 3.25. Join queries on the VEC and STR datasets.

Section 2.2. To illustrate the complexity of this search execution, take as an
example the STR collection and the similarity self-join SJ{1), In this case, the
execution requires 54,908 distance computations even for the most efficient OJ
algorithm. The kNN query, by contrast, with /c = 1, needs only 5,567, and
the range query with r = 1 just several tens of distance evaluations.

In both graphs, query selectivity increases up to /i = 28 and ii = 1800
for the STR and VEC datasets, respectively, retrieving about 1,000,000 pairs.
As expected, the number of distance evaluations performed by the RJ and OJ
algorithms increases rapidly with growing ^. However, the OJ outperforms the
RJ by more than twice for smaller joins on the STR dataset. The limitation of
the OJ algorithm can be observed in the figure for the VEC data. It is due to
the fact that the exclusion overloading principle requires 2/1 < p, i.e., /x < 600
for VEC. Here, the OJ is even more efficient and achieves seven times better
performance than the RJ. This is mainly caused by the distance distribution of
the VEC dataset, where the average distance between each pair of objects is high,
so the small query selectivity can benefit from the higher pruning effectiveness
of the pivot-based filtering. On the other hand, the same distance distribution
incurs poor performance for fi = 1800. The reason is analogous, that is, objects
are not contrasted enough for the pivot-base filtering to remain effective.

3.4 Scalability
We have shown that some access structures are able to outperform others,

and that search costs depend not only on the structure but also on query type
and the distance distribution of datasets. However, considering the amount of
available data on the web, scalability of search structures is probably the most
important issue to investigate. In the elementary case, it is necessary to study
what happens to performance as the amount of data grows. An investigation of
this phenomenon formed the objective of our final group of experiments.

142 SIMILARITY SEARCH

Distance Computations

600.000

500,000
1.000D

. 2,000D
1,000M

.«« ««« I 2,000M
400,000 [• SEQ

300,000 h

200,000 h

100,000

0
100 200 300 400 500 600

Data Set Size (x1,000)

Distance Computations

600,000 I

100 200 300 400 500 600
Data Set Size (x1,000)

100 200 300 400 500 600
Data Set Size (x1,000)

100 200 300 400 500 600
Data Set Size (x1,000)

Figure 3.26. Scalability of range (left) and nearest neighbor queries (right) for the VEC dataset.

Figure 3.26 presents scalability of range and nearest neighbor queries in
terms of distance computations and block accesses. In these experiments, the
VEC dataset is used and the amount of data grows from 100,000 up to 600,000
objects. Apart from the SEQ organization, individual curves are labeled by a
number indicating either the count of nearest neighbors or the search radius,
and a letter, where 'D' stands for the D-index and 'M' for the M-tree. Query
size is not provided for the results of SEQ because sequential organization has
the same costs no matter the query. The results indicate that on the level of
distance computations, the D-index is usually slightly better than the M-tree,
but the differences are not significant - the D-index and M-tree can each save a
considerable number of distance computations over the SEQ. To solve a query,
the M-tree needs significantly more block reads than the D-index and for some
queries (see the 2,000M curve) this number is even higher than for the SEQ.
The reason for such behavior has been given earlier.

In general, the D-index can be said to behave strictly linearly when the size
of the dataset grows, i.e., search costs depend linearly upon the amount of data.
In this regard, the M-tree came out slightly better, because execution costs for
querying a file twice as large were not twice as high. This sublinear behavior
should be attributed to the fact that the M-tree incrementally reorganizes its
structure by splitting blocks and, in this way, improves data clustering. On the

Centralized index structures 143

Speedup STR

1,400

1,200

1,000

800

600

400

200

0

1 1 1

-
. -

1̂=2 •
1̂=3

1 2 3 4

Data set size (x 50,000)

Speedup

1,400

1,200

1,000

800

600

400

200

0
5

-

-
-

"

1

STR

1 1 1 I

> ^ ^ ^ ^ \ ^ ^
- -J

^=2
1̂=3 A

\

\

1 1 1

2 3 4 ,

Data set size (x 50,000)

Figure 3.27. Scalability measured in speedup for RJ (left) and OJ (right) algorithms on the STR
dataset.

Other hand, the D-index used a constant bucket structure, where only the number
of blocks changed. However, the static hashing schema allows the D-index to
have constant costs for exact-match queries. The D-index required one block
access and eighteen distance comparisons, independent of dataset size. This
was in sharp contrast to the M-tree, which needed about 6,000 block reads and
20,000 distance computations to find the exact match in a set of 600,000 vectors.
Moreover, the D-index has constant costs to insert one object, while the M-tree
exhibits logarithmic behavior.

For similarity self-join queries, the situation is comparable. In [Dohnal
et al., 2003b], the STR database was used and the data size varied from 50,000
to 250,000 sentences - the decreased maximum data size was applied due to
the join complexity. Figure 3.27 reports the results in terms of speedup, i.e.,
how many times faster the algorithm is than the NL (nested loops) approach.
The experiments were conducted for queries of small selectivity typically used
in applications like data cleaning or copy detection. The results indicate that
both RJ and OJ have practically constant speedup, which corresponds to costs
growing quadratically with data size. An exception can be observed for /x = 1,
where the RJ slightly deteriorates, while the OJ improves its performance. This
is very simple to understand because costs for the smallest queries are highly
influenced by the distance distribution, which may change as the dataset grows.
All in all, the OJ performs at least twice faster than the RJ algorithm.

The basic lessons learned from these experiments are twofold:

• similarity search is expensive;

• the scalability of centralized indexes is linear.

Of course, there are differences in search costs among individual techniques,
but the global outcome is that search costs grow linearly with dataset size. This

144 SIMILARITY SEARCH

property prohibits their applicability for huge data archives, because, after a
certain point, centralized indexes become inefficient for users' needs.

Suitable solutions arise from two possibilities. First, increased performance
may be obtained by sacrificing some precision in search results. This technique
is called approximate similarity search and we discuss it in Chapter 4. Second,
more storage and computational resources may be used to speed up executions
of queries. The main idea here is to modify centralized solutions by considering
parallel environments and developing distributed structures. An advantage of
distributed processing is that we can spread the problem over a network and
computations can consequently be parallelized. Parallel and distributed access
structures are the subject of Chapter 5.

Chapter 4

APPROXIMATE SIMILARITY SEARCH

The general algorithms for executing approximate range and nearest neigh-
bor queries in metric spaces discussed in Section 9.2 of Chapter 1 are able to
implement different strategies by means of a properly defined pruning condition
and stop condition. In this chapter, we present some relevant approximate simi-
larity search strategies based on either one or both these conditions. The choice
between methods is constrained by each method's ability to support structures
that organize data on disk memories. Finally, the pros and cons of approximate
similarity search are treated, and evidence provided by tests conducted on real
datasets is discussed.

1. Relative Error Approximation
An approximation strategy proposal for range and nearest neighbor queries

which guarantees the relative error on distances remains smaller than a user-
specified value, was presented in [Zezula et al., 1998a, Amato, 2002].

Let TZq = (q^Vq) be a query region and TZi = {Vii'^i) be a data region.
Precise similarity search algorithms discard the region TZi when there is no
overlap between Kq and TZi, because it is guaranteed that no qualifying objects
are contained in Ki. Formally, the region TZi is not accessed when:

d{q,Pi) -ri>rq (4.1)

As Section 1.1 of Chapter 3 explains, the power of this test can be further
enhanced by methods which exploit hierarchical space decomposition like the
M-tree. Let TZp — (pp^ Vp) be the parent region of Ki, which implies that TZi
is completely contained inside Tip, An additional pruning condition can be
applied in order to avoid the region completely. So, the overlap test given by

146 SIMILARITY SEARCH

Equation 4.1 is not needed, and the entire sub-tree rooted in TZi can be safely
pruned if the following inequality holds:

l%,Pp) - d{pi,pp)\ -ri>rq (4.2)

These two "exact" pruning tests can be conveniently relaxed to obtain an
approximate similarity search algorithm in which the quality of the result-set
is constrained by a user-defined relative error on distances.

Let o^ be the actual nearest neighbor of q, and o^ some other object in the
searched collection. The object o"^ is called the (1+e)-approximate-nearest-
neighbor [Arya et al., 1998] of object q if its distance from q is within a factor
(1 + e) of that of the nearest neighbor o^, that is when

In other words, when the previous formula holds, the distance of object o^ from
q is at most 1 + e times bigger than the distance to the actual nearest neighbor

This idea can be generalized for the fc-th nearest neighbor of g', fori <k<n,
where n is the size of the database. Using o^ and o^ to designate the k-ih
approximate and the k-th actual nearest neighbors respectively, we state that

Again, o^ is called the (l+e)-k-th-approximate-nearest-neighbor of q. In both
cases, € represents the relative error on distances to o^ or o^.

The pruning tests in Equations 4.1 and 4.2 can be relaxed to discard regions
even if they overlap the query region, while still guaranteeing a relative error on
distance not exceeding a user-specified value of e. To this aim, let us consider
the following alternate expressions for Equations 4.1 and 4.2:

(4.3)
[false otherwise

and

\d{p,,q)-dlvuPp)\-n < ^ '^ Î ^PP' ^) ~ ^(Pi.Pp)I - n > 0
(4.4)

false otherwise

The numerators in the fractions above represent the distance to the fc-th nearest
neighbor of q (as discovered to that point in the nearest neighbor search), or

Approximate similarity search 147

rgKl+s)

Figure 4.1. The region TZi = {pi,ri), its parent region TZp = {pp,rp), the query region
1Zq{q,rq), and the reduced query region TZe = {q,rq/{l + e))

the maximum accepted distance from q, in case of range search. Provided
the nearest neighbor search has not been completed, this distance can also be
interpreted as the distance from q to the current approximate neighbor. The
denominators, on the other hand, stand for lower bounds on distances between
q and objects within the region TZi. To put it differently, the denominators
represent the minimum distance an object in the given region might have with
respect to q. Naturally, if the lower bounds (i.e., denominators) are greater than
the current radius of q, the region TZi cannot contain any qualifying object and
can therefore be ignored in the search process.

In order to modify these tests for approximate searching, the relative factor
e can be used to relax the lower bounds in the following way:

5 (^ ^ < l + e ifd{p,,q)-r,>0

false otherwise
(4.5)

and

\d{pp,g)-d{pi,Pp)\-n < 1 + ' if l^(^P' ^) " d{pi,pp)\ -ri>0
(4.6)

false otherwise

Naturally, this can never increase similarity search costs, because the number
of distance computations and the number of node reads can both only be reduced.

148 SIMILARITY SEARCH

In fact, the relaxation has the effect of using a smaller query region TZe =
{q^ rq/{l + e)) than the original, as Figure 4.1 illustrates. The precise similarity
search algorithm would use the radius r^ and thus access the region TZp. But in
the approximate approach, the reduced region IZ^ no longer intersects TZp.

Let us label the approximate pruning test ePrune{TZq^TZi^ e) defined by
Equation 4.5, and that defined by Equation 4.6 ePrePrune{TZq^ TZi^ e). The
pruning condition dictated by the approximate similarity search algorithms pre-
sented in Section 9.2 of Chapter 1 is as follows:

Prune{TZq^TZi^e) = if ePrePrune{Tlq^TZi^ e)
return true

else
return ePrune{TZq^ ^ i , e).

As far as the stop condition is concerned, we have that

Stop{r esipoiise^ Xs) — false^

because the Relative Error Approximation technique is based only on the relaxed
branching strategy and the stop condition is not defined. In this respect, the
stop condition is always false.

2. Good Fraction Approximation
The nearest neighbor search algorithm presented in Section 6.1 of Chapter 1,

gradually improves upon the result-set in a series of iteration steps. With each
iteration, whenever a new object o is found with distance from the query object
q less than some object in the current result-set, the fc-th nearest o^ of the result
set is removed and o is inserted in its place.

In [Zezula et al., 1998a, Amato, 2002], an approximate nearest neighbors
search algorithm is proposed. It prematurely stops search execution as soon as
all objects of the result-set belong to a user-specified fraction of objects closest
to the query object q. To explain the idea, suppose that the dataset X contains
10,000 objects oi, 02 , . . . , 010,000 ordered with respect to their distances from
the query object q. If the fraction chosen is 1/200 (that is 0.5%), the approx-
imation algorithm will halt when the result-set is a subset of {oi, 02,..., 050},
since 10,000/200 = 50. If the fraction determines subset smaller than or equal
to k, approximation is not possible and the precise result-set is retrieved.

An efficient implementation of this idea uses a probabilistic approach which
exploits the concept of the distance distribution. The properties of the distribu-
tion of distances in metric space are discussed in Section 10.1.2 of Chapter 1.

Suppose we have a metric space M = (^, d). The distance distribution
relative to pi, Fp.{x) = Pr{(i(pi, o) < x}, gives the probability that an object
o chosen at random from V will have a distance from pi which is less than x.
Suppose the dataset X C V forms a representative sample of the domain V,

Approximate similarity search 149

1

0.9

0.8 -I

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

Fraction of the data set
whose distances from q are
smaller than d{q,o^)

1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000

Figure 4.2. An estimation of the fraction of the objects closest to g, whose distances from q are
less than d{q, Ok), can be obtained by using Fq{x).

i.e., the distribution of distances in X is statistically similar to that of V. This
can generally be assumed to be true given a large enough number of objects in
X, In this case, Fp.{x),pi € X, represents that fraction of objects in X for
which the distance from pi is less than or equal to x. If the number of objects
in X is n, the expected number of objects in X with distance from pi less than
xisn ' Fp^{x).

Let response represent the temporary result-set obtained at a certain in-
termediate iteration of the nearest neighbor search execution. Let o^ be the
current fc-th object in the response and d{q^ Ok) its distance from q. We have
that Fq{d{q^ o^)) corresponds to the fraction of objects in X whose distances
from q are less than or equal to d{q^ o^), as also shown in Figure 4.2. Since
all other objects in the response have a distance from q less than or equal to
d{q^ Ok), all objects in the response are included in that fraction. For instance,
when Fq{d{q^ Ok)) = 1/200, the response is expected to be included in the
set corresponding to the 0.5% of objects which lie closest to q.

So far, we have assumed that the distribution function Fq is known. How-
ever, computing and maintaining this information for any possible query ob-
ject is unrealistic in practice, because query objects g G P are not known
a priori. A solution is to use the overall distance distribution, defined as
F{x) = Pr{(i(oi,02) < x}, instead of Fq. Since, as discussed in Section
10.1.2, the homogeneity of viewpoints is typically high, F can reliably be used
as a substitute for any Fq.

The approximate nearest neighbor search algorithm prematurely stops ex-
ecution when F{d{q^ o^)) is less than a user-specified threshold frac, corre-

150 SIMILARITY SEARCH

0.38

500 1.000

Iteration

1,500

Figure 4.3. Trend of du (iter) as the search algorithm progresses.

sponding to the desired fraction of the entire dataset. The stop condition is
defined as:

Stop{response^ frac) = Fq{d(q^Ok)) < frac^

where Ok is the k-th object in the response.
This approximation method only applies the stop condition. The pruning

condition therefore performs nothing special aside from the usual exact overlap
test:

Prune{Tlq, Tli, Xp) ^ d{q,pi) > r^ + n,

where TZq == (g, r^) is the query region, TZi — {pi^ Vi) is a data region, and the
parameter Xp is obviously left unused.

3. Small Chance Improvement Approximation
As precise nearest neighbor search algorithms iterate, the distance d{ok^ q)

of the A:-th current object Ok from the query object q becomes smaller and
smaller. The improvement due to radius reduction is initially rapid but pro-
gressively slows down. The approximate strategy for nearest neighbor search
first proposed in [Zezula et al., 1998a] and later refined in [Amato, 2002] halts
execution as soon as improvement in the result-set slows down below a user-
specified threshold. This strategy is presented more formally in what follows.

Let dit{iter) be the distance of the query object q from the k-th object in the
response set at iteration iter. The function is defined as

dit{iter) = d{ok{üer),q),

where Ok{iter) is the fc-th nearest object in the response set at iteration iter.
Figure 4.3 shows the characteristic trend of da {iter) as a function of the number

Approximate similarity search 151

0.4 -|

0.36 -

0 34

m n ^̂ 9
8 u. jz
m Ci ^
jS ^ -^
Ä n 9ft -

0 24
n 99 -

n 9
U.Z i

(') 500 ' 1,000

Iteration

' 1,500

Distance

Hyperbolic Appr.

Logaritlimic Appr.

Figure 4.4. Trend of du (iter) and two possible approximation curves.

of iterations. It can be seen that refinements of the distance are considerable
during the initial iteration steps but then become less significant, with little
or no improvement after a certain number of iterations. Observe that du^iter)
often assumes several consecutive constant values. This happens when accessed
regions do not contain better objects, and the length of such (no improvement)
sequences is growing with an increasing number of iteration steps.

The problem here is how to determine the moment, i.e., the iteration, when
the chances for distance improvements are conveniently low. In fact, dit{iter)
is a function that is not known a priori since its values become available as the
search algorithm proceeds. In addition, it is a piecewise constant function, i.e.,
there are intervals where it assumes constant values, but it may decline again
later. To cope with these problems, dit{iter) is approximated by a continuous
function, designated (p{iter), which is used to decide if search algorithms should
be stopped or not.

The approximation of dit{iter) is obtained by using the method of discrete
least-squares approximation (see, e.g., [Burden et al., 1978]). Specifically, the
curve (p(iter) approximating dit{iter) has the following form:

(f{iter) = ci • (fi{iter) + C2.

The least-squares approximation technique finds values of ci and C2 for which
(p{iter) optimally approximates dit{iter), once a specific curve (pi is chosen.
Successful results were obtained using the hyperbolic function (pi{i) = 1/i
and the logarithmic function (fi (i) = log{i). For illustration. Figure 4.4 shows
a specific function daiiter) and its two approximations.

The fact that (p{üer) is a continuous decreasing function leads to the follow-
ing definition of a stop condition: Informally, we want to stop the algorithm
when (fi{iter) ceases to decline dramatically and the change between consec-
utive iterations drops below a threshold value. From the mathematical point

152 SIMILARITY SEARCH

of view, we use the derivative ip'{iter) to characterize the shape of the curve
(f{iter). Because (f(iter) is decreasing, its derivative will always be negative.
The more rapidly the function decreases, the higher the negative number the
derivative returns. Thus a parameter der can be chosen so that the algorithm
halts when Lp'{iter) > der, since this indicates that (p{iter) is now decreas-
ing only very slowly. The parameter der is fixed in such a way as to control
the tradeoff between approximation quality and performance improvement. Of
course, der approaching zero results in poor performance but high approxi-
mation quality, because the algorithm may stop very close to its natural end.
Higher negative values of der, on the other hand, result in higher performance
but poorer quality, because the algorithm may stop prematurely, when the cur-
rent result-set is still quite different from the precise result-set. Obviously,
with the threshold der set to zero, the algorithm behaves like a precise nearest
neighbors search.

This method is based only on the stop condition, so the pruning condition per-
forms the usual (exact) overlap test and only discards a node when its bounding
region fails to overlap the query region, i.e.:

PruneiUq, 7^̂ , Xp) = d{q,pi) > r^ + r^,

where TZg = (g, r^) is the query region and TZi — (p^, n) is a data region, and
the parameter Xp is again left unused.

On the other hand, the stop condition refines ip{iter) iteration by iteration
and checks if the derivative (p'{iter) is above the approximation threshold:

AS'top(response, der) = let iter denotes the iteration number;
let Ok be the fc-th element of response;
compute (/p(iter)using the new

point (zter, d{ok^ q))v^ addition
to the points previously used;

if iter==1
return false]

else
return((/?'(iter) > der);

4. Proximity-Based Approximation
As we have already explained, there is no guarantee that qualifying objects

will be found in the intersection of data and query regions. Depending on
specific distribution of data, it may happen that the overlap covers a portion of
the space containing very few or no objects. Therefore, some regions are more
likely to contain the query response than others.

Approximate similarity search 153

An approach proposed in [Amato et al., 2003, Amato, 2002] attempts to
detect these situations and is based on the relaxed branching strategy. It relies
for its underlying concept upon the proximity of ball regions discussed in Sec-
tion 10.2 of Chapter 1. In fact, the proximity prox{7Zq, TZi) of two ball regions
TZq^ TZi is defined as the probability that a randomly chosen object o over the
same metric space M. appears in both the regions.

The basic idea here is to use the proximity measure to decide if a region should
be accessed or not, so that only data regions with proximity to the query region
greater than a specified threshold px are accessed. Of course, some regions
containing qualifying objects may be falsely discarded by the algorithm, so the
results obtained are only approximate. When the threshold is set to zero, search
results are precise - the higher the proximity threshold, the less accurate the
results, but the faster the query execution.

Let TZq be a query region and TZi a data region. The pruning condition of the
approximate range and nearest neighbors search is defined as follows:

Prune{TZq^TZi^px) = prox(TZq^TZi) < px.

This technique is among those that omit a stop condition, so the stop condition
always evaluates to false:

S'top(response, Xg) = false.

5. PAC Nearest Neighbor Searching
In [Ciaccia and Patella, 2000b], an approach called the Probably Approx-

imately Correct (PAC) nearest neighbor search in metric spaces is proposed.
The idea is to bound the error on distance of the approximate nearest neigh-
bor so that a (l+e)-approximate-nearest-neighbor is found. In addition, the
proposed algorithm may halt prematurely when the probability of the current
(l+e)-approximate-nearest-neighbor satisfies the threshold S. In fact, the ap-
proximation is controlled by two parameters. The e parameter is used to specify
the upper bound on the desired relative error on distance of the approximate
nearest neighbor, while the S parameter specifies the degree of confidence that
the upper bound e has not been exceeded. If ö is set to zero, the algorithm stops
when the resulting object is guaranteed to be the (l+e)-approximate-nearest-
neighbor. Values of S greater than zero may return an object that is not a
(l+€)-approximate-nearest-neighbor. On the other hand, when e is set to zero,
6 controls the probability that the retrieved object is not the actual nearest neigh-
bor. Of course, when both e and S are set to zero, a precise nearest neighbor
search is performed.

More formally, let q be the query object, o^ the actual nearest neighbor,
and o^ the approximate nearest neighbor found. Let eact be the actual error on

154 SIMILARITY SEARCH

distances of o"̂ and o^, that is

d(q, o^

The PAC nearest neighbor algorithm retrieves a (l+e)-approximate-nearest-
neighbor with confidence b. That is, the algorithm stops when o^ is such that

Pr {eaci > 6} < (J.

The pruning condition for this strategy is defined in the same way as that of the
Relative Error Approximation technique given in Section 1. Besides the usual
exact overlap test, it incorporates the extended pruning test which exploits a
tree-like hierarchical structure and is specified in Equation 4.2 (pg. 146). For
convenience, we give the pruning condition in the pseudocode below:

Prune{TZq^ TZi^e) — if ePrePrune{Tlq^ TZi^ e)
return true

else
return ePrune{TZq^ TZi^ e).

The stop condition is based on the distribution of nearest neighbors in X (of
cardinality n) with respect to q, designated as Gq{x) and defined as follows:

Gq{x) = Pr {3o G X : d{q, o) < x} - 1 - (1 - Fq{x)Y,

As previously stated, the algorithm stops when Pr {eact ̂ e} ^ »̂ where eact
is the actual relative error on distances. That is when

Pr {3o G X : d{q, o^)/d{q, o) - 1 > e} =

= Pr {3o G X : d{q, o) < d{q, o^)/(l + e)} < S.

This leads to the definition of the stop condition as:

S'top(response,€,5) = Gq{d{q^o^)/{l + e)) < 5.

The limitation of this approach is due to its only being defined for INN simi-
larity queries.

6. Performance Trials
In this section, we provide the reader with a comparison of the techniques

introduced within this chapter. We have used implementations provided by
respective authors. These prototypes are all based on the publicly available
implementation of the M-tree [Ciaccia et al., 1997a]. To assess performance
objectively, we performed various experiments using the collection of 11,000

Approximate similarity search 155

ÜJ 1

.''»H^

— 3 ^
v ^ ^ ^

0 0.2

Relative error

\
V»
•c*x tt^^^^^
^•>4>4^^*CX

^ " ^
^

0.4 0.6

i»:rv.
^ i $ ^

^^^^
0.8 1

-•-r=1,800
• r=2,200
-A-r=2,600
-•- r-3,000

7-|

6 -

5-

Uj 4 -

3

2

1
(

Proximity

^ \
X:,\

) 0.2 0.4 0.6 0.8 1

-•-r=1,800
-•-r=2,200
-^r=2,600
-•- r-3,000

(a) (b)

Figure 4.5. Approximate range query results: (a) Relative Error Approximation and (b)
Proximity-based Approximation techniques.

objects of the VEC dataset described in Section 3.1 of Chapter 3. Data partition-
ing on this dataset results in highly overlapping regions and precise similarity
search typically has high costs. In this respect, this dataset is a good candi-
date for demonstrating the advantages of the approximate similarity search.
Note that when precise similarity search is already efficiently executed, there
is obviously not much space for further improvements.

We experimentally varied approximation parameters, query radii, and the
number of objects retrieved. For each test configuration, approximate search
algorithms were executed using fifty different query objects (not occurring in
the dataset), the costs presented being averaged values. Results of the trials are
shown in Figure 4.5 for range queries and in Figure 4.6 for the nearest neighbor
queries. In the following, we discuss these results in greater depth.

6.1 Range Queries
The approximate range search can only be implemented using the Relative

Error Approximation technique or the Proximity-based Approximation tech-
nique. We executed range queries with radii varying from 1,800 to 3,000, so
the response size varied between 1% and 20% of objects in the dataset. The
approximation parameters of the two methods were varied, and for each test
configuration the improvement in efficiency IE and recall R, as defined in Sec-
tion 9.3 of Chapter 1, were computed. Results are shown in Figure 4.5, where
the curves illustrate the dependence of improvement in efficiency IE on recall
R for different query radii.

As would be expected, both methods obtained high values for IE in corre-
spondence to small values of R- the improvement in efficiency is paid for by
lower recall. Performance is generally better when small query radii are used.

Observe that the improvement in efficiency for approximate range search
algorithms is not very high. In fact, it is always below one order of magnitude.
For example, the Relative Error Approximation method executes a range query

156 SIMILARITY SEARCH

0.005 0.01 0.015 0.02 0.025 0.03

6P

(C) (d)

-•-eps=2
-»-eps=3
-^eps=4|

0.001 0.002 0.003 0.004 0.005

EP

(e)

Figure 4.6. Approximate nearest neighbors query results for all five methods.

with radius 2,200 1.8 times faster with recall R = 0.2, that is 20% of objects
retrieved by the precise search occur in the approximate result. On the other
hand, the Proximity-based Approximation method with the same recall is able
to execute the same query six times faster than the precise execution. The
difference in performance of these two methods is mainly due to the superiority
of the Proximity-based Approximation method in detecting regions which can
be discarded.

6.2 Nearest Neighbors Queries
All the methods presented in this chapter can be used for approximate nearest

neighbor searches. In general, the improvements in efficiency obtained are high
even for good quality results. Nearest neighbor queries in our experiments were

Approximate similarity search 157

executed varying k between 1 and 50 with the exception of the PAC method,
which is Hmited to using k = 1 only. We varied the approximation parameters
of the methods and for each configuration computed improvement in efficiency
IE and error on position EP, as defined in Section 9.3 of Chapter 1. Since the
PAC method depends upon two approximation parameters, 6 and e, we used ö
varying over several values of EP for three fixed values of the relative distance
error e. Results are depicted in Figure 4.6, where we plot IE versus EP. Large
improvements in efficiency can be observed for all methods, but the specific
values depend upon accuracy as measured in terms of error on position EP.
Performance is systematically higher for small values of k.

The Relative Error Approximation method proved to be the least efficient.
The method seems to saturate for high values of the approximation parameters,
with no additional improvements in efficiency obtained. Result-sets are con-
sequently quite precise and the difference in efficiency from precise execution
is negligible. When k = 1, approximate execution is about 1.5 times faster
than precise execution for EP = 0.0002. All other methods offer substantially
greater improvements, roughly speaking several orders of magnitude. Let us
focus on a value for EP of 0.0005, with k = 1. This value of EP implies that
the approximate nearest neighbor is on average the fifth actual nearest neighbor.
The Good Fraction Approximation method offers an improvement in efficiency
of about sixty, i.e., the approximate search is executed sixty times faster than
a precise search. In other words, if the precise execution takes one minute,
then the approximate execution needs just one second. The same can be ob-
served for the Proximity-based Approximation method. For the Small Chance
Improvement Approximation method, we see an improvement in efficiency of
about ten times, and for the PAC method with e = A, IE = 50.

The approximate algorithms, however, perform much faster for lower values
of accuracy. For example, with EP = 0.003, i.e., the approximate nearest
neighbor is the thirtieth actual nearest neighbor, the Small Chance Improve-
ment Approximation is thirty times faster. For the same configuration, the Good
Fraction Approximation, Proximity-based Approximation, and PAC methods
are about 300 times faster - if precise execution takes five minutes, the approx-
imate execution still takes just one second.

We observe that the chief reason for the markedly poor performance of the
Relative Error Approximation method (with respect to the others) is that precise
nearest neighbors algorithms find good candidates for the result-sets soon on,
and then spend the remainder of their time mostly in refining the current results.
Very efficient methods have the property of stopping the search execution early,
i.e., as soon as the current result-set is good enough. In fact, the Good Fraction
Approximation, Small Chance Improvement Approximation, and PAC methods
are based on early termination strategies, which aim at identifying this situation.
The Proximity-based Approximation method, even if it is defined as a relaxed

158 SIMILARITY SEARCH

branching strategy, implicitly behaves like an early termination strategy, as
explained in the following.

Our experiments have shown that after a certain number of iterations of the
approximate nearest neighbors algorithm with the Proximity-based Approxi-
mation strategy, all entries contained in the priority queue PR (see Section 9 of
Chapter 1 for a description of the approximate nearest neighbors search algo-
rithm) are suddenly discarded and the algorithm terminates. This is the main
reason for the big improvement in query execution speed. We call the iteration
in which the remaining entries are discarded the cut-off iteration. We have also
observed that small values of fc anticipate the occurrence of the cut-off iteration,
which can be explained as follows:

— k=1
— k=3

k=10

1,000

Figure 4.7. Trend of the query radius during the precise nearest neighbors search execution.

1 The proximity of two ball regions is less than or equal to the probability
that a randomly chosen point belongs to the smaller of the two regions.
This probability can be approximated by F{r), where F (see Section 10.1.2
of Chapter 1) is the overall distance distribution and r is the radius of the
smaller region.

2 At each iteration of the nearest neighbors search algorithm, the query radius
is changed and set to the distance between the query and the current k-th
nearest neighbor. Let x be the approximation threshold. When the dynamic
radius r^ of the query region is reduced so that x > F{rq), then all regions
in the queue PR are pruned (due to Property 1 above), so the cut-off iteration
occurs and the search algorithm terminates.

3 At any specific iteration of the nearest neighbors search algorithm, higher
values of k result in a larger query radius. To illustrate this, consider Fig-
ure 4.7 which relates the current query radius and the number of iteration

Approximate similarity search 159

Steps of the precise nearest neighbors search algorithm, individually for
k = 1^3, and 10. Observe that query radii for /c = 1 are systematically
below those for k = 3, and these are systematically below those for k = 10.
This means lower k methodically results in smaller query regions, which
is quite obvious. Given a specific approximation threshold x, let fq be the
maximum radius such that x > F{fq). Figure 4.7 shows that Yq is reached
faster with small values of k and may never be reached when x is too small
or when k is too big. Since the cost for a precise similarity search is almost
independent of fc, IE is higher for lower values of k.

The previous arguments can also be used to explain the performance improve-
ments observed for approximate nearest neighbors queries vis ä vis range
queries. In fact, given that the query radius is fixed during execution of the
range search algorithm, the cut-off iteration either never occurs or is the very
first iteration. In the latter case, however, even though execution costs are very
low, the result-set is empty because all regions are discarded. As a conse-
quence, range queries with larger radii are often posed but their evaluation is
not accelerated that significantly.

6.3 Global Considerations
In summary, the approximation methods described afford moderate improve-

ment in efficiency for range queries and substantial improvement for nearest
neighbors queries. The Good Fraction Approximation method achieves the
highest performance, but it can only be used for nearest neighbors queries.
On the other hand, the Proximity-based Approximation method offers nearly
the same results, with the advantage of also being applicable to range queries.
Improvement in efficiency of the Small Chance Improvement Approximation
method may also reach two orders of magnitude, but the technique is always less
efficient than the two previous competitors. The Relative Error Approximation
method can hardly be recommended, because its performance improvements
are only marginal. The (minor) drawback of the Good Fraction Approxima-
tion and the Proximity-based Approximation methods is that they require pre-
computing, storing, and manipulating the distribution and density functions of
the searched data. However, as discussed in Section 10.1.2 of Chapter 1, this
overhead is realistic. The Relative Error Approximation and the Small Chance
Improvement Approximation methods do not need any pre-analysis of datasets
and do not require any other storage overhead but their performance is worse
than that of the other two methods. Finally, the PAC method also achieves very
good performance. However, it is limited to nearest neighbor searches (k = 1)
only.

Chapter 5

PARALLEL AND DISTRIBUTED INDEXES

Centralized metric indexes achieve a significant speedup (both in terms of
distance computations and disk-page reads) when compared to a baseline ap-
proach, the sequential scan. However, experience with centralized methods
(see, e.g.. Section 3 of Chapter 3) reveals a strong correlation between the
dataset size and search costs. More specifically, costs increase linearly with
the growth of the dataset, i.e., it is practically twice as expensive to compute a
similarity query in a dataset of a given size as it would be with a dataset of half
that size. Thus, the ability of centralized indexes to maintain a reasonable query
response time when the dataset multiplies in size, its scalability, is limited.

In this chapter, we present methods which solve this problem by exploiting
parallel computing power. The idea behind it is easy in principle: As the dataset
grows in size, more independent computation and storage resources are added
(CPUs, disks, etc.), keeping the query response time low.

The basis of parallel and distributed index structures as well as differences
between the two approaches can be found in Section 1. In Section 2, we present
a modification of the M-tree structure for a parallel environment, where multiple
processors and disks are used to accelerate the evaluation of similarity queries.
A dynamic index structure which exploits a distributed environment to enhance
similarity search is explained in Section 3. As the experiments in Section 4
demonstrate, this structure attains practically constant response times even as
the dataset grows, provided sufficient computational resources are available.

1. Preliminaries
The field of architectures and paradigms for parallel and distributed com-

puting environments is quite large due to the numerous research challenges it
offers for different objectives. In this book, we concentrate on the database
perspective. We start by describing some basic requirements for parallel and

162 SIMILARITY SEARCH

distributed index structures, and also briefly discuss some of the advantages and
drawbacks of the parallel and distributed paradigms.

1.1 Parallel Computing
We use a definition of parallel systems similar to [Leopold, 2001]: A parallel

system is a device composed of multiple independent processing units and/or
multiple independent storage places. All the units share dedicated communica-
tion media and data. Accordingly, a parallel computing environment can be a
multi-processor computer with several disk units. The processors (CPUs) share
operating memory (RAM) and use a shared internal bus for communicating with
the disks.

In order to fully exploit the parallel environment, an index structure should
have the following properties:

• shared data - any object from a stored dataset is available to any processor
at any time. Of course, there are situations, when, for consistency reasons,
some objects will be locked by a processor and not immediately accessible
to another. But such a condition should occur only intermittently;

• multiple operations at the same time - the system can evaluate several inde-
pendent operations on different processors. The number of tasks processed
in parallel is limited by the number of processing units (CPUs);

• parallel storage - data can be stored on multiple disks and each disk is
available to all processors. There is the possibility of moving data from one
disk to another.

The first two requirements allow a parallel index structure to process objects
from a stored dataset using multiple processors at the same time. The third
property allows data to be efficiently distributed across disks, thus enabling
parallel access to stored objects while processing queries.

In order to measure the effectiveness of parallel search implementations,
[DeWitt and Gray, 1992] define two factors: speedup and scaleup. Specifically,
given a fixed job run on a small system and a run on a large (big) system, the
speedup afforded by the larger system is measured as:

ST
speedup = — ,

where ST is the Small system elapsed Time, and BT is the Big system elapsed
Time. Speedup is linear if an n-times bigger (more powerful) system yields
a speedup of n. Speedup keeps the problem size constant and expands the
system.

Scaleup measures the ability to expand both the system and the problem
size. It is defined as the ability of an n-times larger system to perform an n-

Parallel and distributed indexes 163

times larger job in the same elapsed time as the original system for the original
problem size. The scaleup metric is:

STSP
scaleup = - g ^ ^ ,

where STSP is the Small system elapsed Time on Small Problem, and BTBP
is the Big system elapsed Time on Big Problem. If this scaleup equation eval-
uates to one, scaleup is said to be linear.

In spite of the fact that parallel processing can accelerate query execution,
only a fixed amount of resources are available. Thus, processing can only be
enhanced by a factor that is strictly bounded by the number of added resources.
The paradigm of distributed processing further extends these possibilities.

1.2 Distributed Computing
In distributed environments, computers (network nodes) are connected via

a high-speed network (such as a corporate local network, the Internet, etc.).
They share the processing power of their CPUs as well as the storage resources
of their disks. Objects of distributed organizations are allocated and processed
over such an infrastructure. In order to solve queries, store new data, or remove
unneeded objects, network nodes pass requests to other nodes by means of a
specific navigation or routing mechanism. In the following, we concentrate on
the two most important paradigms for distributed indexes, those oi Scalable and
Distributed Data Structures (SDDS) and Peer-to-Peer (P2P) data networks.

1.2.1 Scalable and Distributed Data Structures

The paradigm of Scalable and Distributed Data Structures was originally
proposed by [Litwin et al., 1996] for simple search keys like numbers and
strings. Data objects are stored in a distributed file on specialized network
nodes called servers. More servers are employed as the file grows and additional
storage capacity is required. The file is modified and queried by network nodes
called clients through insert, delete, and search operations. The number of
clients is unlimited and any client can request an operation at any time. To
ensure high effectiveness, the following three properties should be built into
the system:

• scalability - data migrate to new network nodes gracefully, and only when
the network nodes already used are sufficiently loaded;

• no hotspot - there is no master site that must be accessed for resolving
addresses of searched objects, e.g., there is no centralized directory;

• independence - the file access and maintenance primitives, such as the
search, insertion, or node split, never require atomic updates on multiple
nodes.

164 SIMILARITY SEARCH

There are several practical reasons why the second property should be satis-
fied. In particular, if hotspots such as centralized directories exist, they would
sooner or later turn into bottlenecks as the files grow. Structures without
hotspots are also potentially more efficient in terms of the number and the
distribution of messages sent over the network during the execution of an op-
eration.

The third property is vital in a distributed environment, because informing
other nodes may be either inefficient or even impossible in large-scale networks.
Since they do not support techniques like multicast or broadcast, update opera-
tions cannot efficiently contact multiple servers with only one message. As an
alternative, they would flood the network with multiple independent messages
to all the respective nodes, which is certainly undesirable. Moreover, when
several updates occur simultaneously on different servers, it may be difficult to
maintain data consistency on individual nodes.

1.2.2 Peer-to-Peer Data Networks

Another distributed paradigm has led to the definition of the Peer-to-Peer
(P2P) data network. In this environment, network nodes are called peers, equal
in functionality and typically operating as part of a large-scale, potentially
unreliable, network. Basically, a peer offers some computational resources,
but can also use resources of the others [Aberer and Hauswirth, 2002]. In
principle, the P2P network inherits the basic principles of SDDSs with added
new requirements to overcome the problems of unreliability in the underlying
network. These can be summarized as follows:

• peer - every node participating in the structure behaves as both client and
server, i.e., the node can perform queries and at the same time store a part
of the processed data file.

• fault tolerance - the failure of a network node participating in the structure
is not fatal. All defined operations can still be performed, but the affected
part of the dataset is inaccessible,

• redundancy - data components are replicated on multiple nodes to increase
availability. Search algorithms must respect the possibility of multiple paths
leading to specific instances.

Not every P2P structure proposed so far satisfies all these properties. How-
ever, these are the rules that any P2P system should be aware of and which
ensure maximal scalability and effectiveness of the system.

2. Processing M-trees with Parallel Resources
In this section, we describe a parallel version of the M-tree algorithms (see

Chapter 3 for description of the M-tree) as proposed in [Zezula et al., 1998b].

Parallel and distributed indexes 165

The main objective of this parallel implementation is to decrease both CPU and
I/O costs of executing similarity queries. In principle, there are two specific
problems (restrictions) to be considered. First, we must respect the hierarchical
dependencies between a parent node and its respective child nodes. Specifi-
cally, the search starts at the root node of the M-tree and continues recursively
by traversing the relevant child nodes until leaf nodes with possibly qualify-
ing objects are found, or search on a given path is terminated. In any case,
a node on a given level cannot be accessed unless all its ancestors have al-
ready been processed. Thus, only nodes on the same level can be processed
in parallel. Second, the use of priority queues for searching represents another
serial component in the algorithms. For example, in a nearest neighbors search,
the validity and significance of nodes in different branches of the M-tree can
change, because paths that seem to qualify at a certain stage of the search may
be eliminated when more relevant objects are found, possibly in some other
parts of the M-tree.

In the following, we outline the principles of CPU and I/O parallel strategies
for similarity-query execution in M-trees. Then we discuss qualitatively the
results of known experimental evaluations.

2.1 CPU Parallelism
The order in which the M-tree nodes are accessed is determined by the (pri-

ority) queue, which is dynamically built and maintained in course of query
execution (refer to Chapter 3). For coordination reasons, the queue is exclu-
sively maintained by a dedicated CPU. Thus, the additional processors can only
be used to accelerate performance while computing distances of objects within
individual accessed nodes. Specifically, at each step, a node containing m keys
is selected from the queue and up to m CPUs are used to compute distances
between the query object and the particular keys. Similarly, multiple CPUs are
applied to parallel computations of distances in leaf nodes, where data objects
actually reside.

2.2 I/O Parallelism
As we have already anticipated, the order of accessing nodes is determined

by their position in the priority queue. Thus, the processing strategy is to fetch
in parallel as many nodes from the queue as possible, and bring them into main
memory. To this aim, the key approach to achieve good performance resides
in using an adequate declustering method to distribute nodes among available
disks.

The problem of declustering can be seen in choosing a particular disk upon
which to place a new node, resulting from splitting an overflowing M-tree node.
The disk should be chosen in such a way that it does not contain many similar

166 SIMILARITY SEARCH

objects or object regions. In other words, the nodes are distributed among disks,
so that the probabiHty of accessing n disks during a search for n nodes is high.
[Zezula et al., 1998b] have considered two different types of data placement
strategies which can be briefly characterized as follows.

Global Allocation Declustering Method

With the global allocation strategy, the content of nodes is not taken into account,
but the number of nodes on a disk is practically constant, thus no data skew
occurs. The global allocation strategy does not consider similarity between
node objects, but typically depends upon the order in which new nodes are
created. In particular, the round robin strategy stores the j-th node on the (j
mod n)-th disk of an n-disk system, while the random strategy decides which
disk should store the j-th node using a random number generator.

Proximity-Based Allocation Declustering Method

This approach, by contrast, does not consider the data load on individual disks,
but makes use of the proximity of node regions to locally avoid putting similar
objects on the same disk. Proximity-based strategies allocate nodes respecting
the proximity of their covering ball regions as described in Section 10.2 of
Chapter 1. When choosing a destination disk, the sum of proximities between
the new region and the regions of nodes already stored on the disk is minimized.

Efficiency Testing

Experiments by [Zezula et al., 1998b] demonstrate relatively high I/O speedup
and scaleup, and the effects of the sequential components of the M-tree al-
gorithms seem not to be very restrictive. The approach also seems not to be
dependent on query type, number of objects retrieved, or type of object used.

During the experimental evaluation, the authors observed a practically lin-
ear speedup of M-tree CPU costs. The scaleup as investigated by the authors
remained constant near a value of one when the initial 10,000-object file sup-
ported by five processors was expanded to a file size four times larger (40,000
objects) executed by four times as many processors, i.e., twenty processors.

Although the results show significant improvements, they are still limited
considering the scalability, because the parallelized M-tree cannot dynamically
increase the number of processors to preserve query response time as the file
grows in size. The number of processors that can be actively used is also
bounded by the maximum number of keys in a node. Moreover, the serial
nature of the priority queue used during the search also implies a possible
bottleneck.

Parallel and distributed indexes 167

2.3 Object Declustering in M-trees
A slightly different version of the parallel M-tree is proposed in [Alpkocak

et al., 2002]. The algorithm does not try to decluster the nodes of the M-tree
but instead distributes the nodes' objects across multiple disks. The M-tree leaf
nodes are modified - they contain only addresses of particular objects stored
on respective disks. The search algorithm proceeds exactly in the same way as
for the standard M-tree until the leaf node is reached. After that, the object-
declustered storage allows parallel acceleration of retrieval. In particular, the
technique tries to distribute the objects according to their distance - specifi-
cally, similar objects are stored on different disks. Thus objects accessed by
a similarity query are maximally distributed, allowing maximal parallelization
during retrieval.

The specific declustering algorithm works as follows: After inserting a new
object ON into the M-tree, but before actually storing the object on a disk, we
issue a range query R{ONJ d{oN^p)), where p is the pivot of the M-tree leaf
node where the object is to be logically stored. The evaluation of the query
gives us objects similar to ON, and, more importantly, the identifications of
disks on which these objects are stored. The disk with the minimum number
of retrieved objects is then selected for storing the object ON-

On the basis of the criterion defined by the authors, i.e., the best utilization
of parallel disks during similarity queries, the proposed declustering technique
is nearly optimal. The declustering algorithm considers both object proximity
and data load on disks as the experimental results provided have shown.

3. Scalable Distributed Similarity Search Structure
The parallel paradigm has shown that a certain speedup of a centralized index

is possible. However it has still limited scalability due to the nature of parallel
computing. Moreover, computers with a large number of processors (tens or
hundreds) as well as disk arrays with huge storage are far more expensive than
a network of several common workstations.

The first distributed index to support similarity search in generic metric
spaces is based on the idea of the Generalized Hyperplane Tree, designated
GHT* [Batko et al., 2004]. The structure allows storing datasets from any met-
ric space and has many essential properties of the SDDS and P2P approaches.
It is scalable, because every peer can perform an autonomous split and dis-
tribute the data over several peers at any time. It has no hotspot, and all peers
use an addressing schema as precise as possible, while learning from misad-
dressing. Updates are performed locally and splitting never requires sending
multiple messages to many peers. Finally, every peer can store data and per-
form similarity queries simultaneously. In what follows, we present the main
characteristics of the GHT* index.

168 SIMILARITY SEARCH

3.1 Architecture
In general, the GHT* exploits the P2P paradigm, i.e., it consists of network

nodes (peers) that can insert, update and delete objects in the structure, and
retrieve them using similarity queries.

In the GHT*, the dataset is distributed among peers participating in the
network. Every peer holds sets of objects in its storage areas called buckets. A
bucket is a limited space dedicated to storing objects. It may, for example, be
a memory segment or a block on a disk. The number of buckets managed by a
peer depends on its own potentialities - a peer can have multiple buckets, only
one bucket, or no bucket at all. In the latter case, the peer is unable to hold
objects, but can still issue similarity queries and insert or update objects.

Since the GHT* structure is dynamic and new objects can be inserted at any
time, a bucket on a peer may reach its capacity limit. In this situation, a new
bucket is created and some objects from the full bucket are moved to it. This
new bucket may be located on a different peer than the original one. Thus, the
GHT* structure grows as new data come in. The opposite operation - merging
two buckets into one - is also possible, and may be used when objects are
deleted from the GHT*.

The core of the algorithm lays down a mechanism for locating appropriate
peers which hold requested objects. The part of the GHT* responsible for this
navigation is called the Address Search Tree (AST). In order to avoid hotspots
which may be caused by the existence of a centralized node accessed by every
request, an instance of the AST structure is present in every peer. Whenever
a peer wants to access or modify the data in the GHT* structure, it must first
consult its own AST to get locations, i.e., peers, where the data resides. Then, it
contacts the peers via network communication to actually process the operation.

Since we are in a distributed environment, it is practically impossible to
maintain a precise address for every object in every peer. Thus, the ASTs in
the peers contain only limited navigation information which may be imprecise.
The locating step is then repeated on contacted peers until the desired peers
are reached. It is guaranteed by the algorithm that the destination peers are
always found. The GHT* also provides a mechanism called image adjustment
for updating the imprecise parts of the AST automatically.

In the following, we summarize the foregoing information and provide some
necessary identifiers which will be employed in the remainder of this chapter:

• Each peer maintains data objects in a set of buckets. Within a peer, the
Bucket IDentifier (BID) is used to address a bucket.

• Every object is stored in exactly one bucket.

• Each peer participating in the network has a unique Network Node IDentifier
(NNID).

Parallel and distributed indexes 169

• A structure called an Address Search Tree (AST) is present in every peer.

• Subtrees of the AST are automatically updated during the evaluation of
queries using an algorithm called image adjustment.

• Peers communicate through the message passing paradigm. For consis-
tency reasons, each request message expects a confirmation by a proper
acknowledgment message.

3.2 Address Search Tree
The AST is a binary search tree based on the Generalized Hyperplane Tree

(GHT) [Uhlmann, 1991], one of the centralized metric space indexing struc-
tures explained in Section 2.2 of Chapter 2. Its inner nodes hold the routing
information of the GHT, a pair of pivots each. Each leaf node represents a
pointer to either a bucket (using BID) or a peer (using NNID) holding the data.
Whenever the data is in a bucket on the local peer, a leaf node is a BID pointer.
An NNID pointer is used if the data is on a remote peer. An example of the AST
is depicted in Figure 5.1. The NNID and BID pointers in leaf nodes are denoted
by BIDi and NNIDi symbols, while pivots of inner nodes are designated as
Pi. Observe that every inner node has exactly two pivots. In order to recognize
inconsistencies between ASTs on different peers, every inner node has a serial
number. It is initially set to one and incremented whenever a particular part of
the AST is modified. The serial numbers of inner nodes are shown above the
inner nodes in Figure 5.1.

<P1,
/

<P3,P4 >^
/ \

BIDx BID2

\

<P5,P6 >^
/ \

BID3 NNIDi

Figure 5.1. An example of an Address Search Tree.

Figure 5.2 illustrates the instances of AST structure in a network of three
peers. The dashed arrows indicate the NNID pointers while the solid arrows
represent the BID pointers. Observe that Peer 1 has no buckets, while the other
two peers contain objects located only under specific leaves.

3.3 Storage Management
As we have already explained, the atomic storage unit of the GHT* is a

bucket. The number of buckets and their capacity on a peer always have upper

170 SIMILARITY SEARCH

Peerl

Peer 2

Legend:

Q Bucket

NNIDorBID

Inner node

Figure 5.2. The GHT* network of three peers.

bounds, but these can be different for different peers. Since the bucket identifiers
are only unique within a peer, a bucket in the global context is addressed by
a pair (NNID, BID). To achieve scalability, the GHT* must be able to split
buckets and allocate new storage and network resources. As is intuitively clear,
splitting one bucket into two implies changes in the AST, i.e., the tree must
grow. The complementary operation, merging two buckets into one, forces the
AST to shrink.

3.3.1 Bucket Splitting
The bucket splitting operation is triggered by the insertion of an object into

an already-full bucket. The procedure consists of the following three steps:

• A new bucket is allocated. If the capacity exists on the local peer, the bucket
is created there. Otherwise, the bucket is allocated either to another peer
with free capacity, or a new peer is used.

• A pair of pivots is chosen from objects of the overflowing bucket as detailed
in Section 3.3.2.

• Objects from the overflowing bucket closer to the second pivot than to the
first one are moved to the new bucket.

Figure 5.3 illustrates splitting one bucket into two. First, two objects are
selected from the original bucket as pivots pi and p2- Then, the distances
between the pivots and every object in the original bucket are computed. All
objects closer to the pivot p2 are moved into a new bucket BID2. A new inner
node with the two pivots is added into the AST.

Parallel and distributed indexes 171

• •
^•)

BIDi

K
1 1 SPLIT)

| P l | P 2 |

^ ^ " \ ^

« BID^

Figure 5.3. Splitting of a bucket in GHT.

3.3.2 Choosing Pivots

A specific choice of pivot mechanism directly impacts the performance of the
GHT* structure. However, the selection can be a time-consuming operation,
typically requiring many distance computations. To smooth this process, the
authors use an incremental pivot selection algorithm which is based on the
hypothesis that the GHT structure performs better if the distance between pivots
is great.

First, the first two objects inserted into an empty bucket become pivot can-
didates. Then, distances to the candidates are computed for every other object
inserted. If at least one of these distances is greater than the distance between
the current candidates, the new object replaces one of the candidates, so the dis-
tance between the new pair of candidates is greater. After a sufficient number
of insertions, the distance between the candidates is large with respect to the
bucket dataset. However, the technique need not choose the most distant pair
of objects. When the bucket overflows, the candidates become pivots and the
split is executed.

3.4 Insertion of Objects
Inserting an object o^ starts in a peer by traversing its local AST from

the root. For every inner node < pi^p2 >» the left branch is followed if
d{pi^ ON) < d{p2^ ON), otherwise the right branch is followed. Once a leaf
node has been reached, a BID or NNID pointer is obtained. If it is the BID
pointer, the inserted object is stored in the local bucket that the BID points to.
Otherwise, the NNID pointer found is applied to forward the request to the
peer, where the insertion continues recursively until an AST leaf with the BID
pointer is reached.

For an example refer to Figure 5.1 again, where the AST is shown. To
insert object ON, the peer starts traversing the AST from the root. Assume
that d(pi, ON) > d{p2^ o^v), so the right branch is taken where distances di =
d{pbi ON) and ^2 — d{pQ^ ON) are evaluated. Ifdi < ^2 the left branch is taken
which is a leaf node with BIDs. Therefore, the object ON is stored locally in
a bucket denoted by BID^. In the opposite situation, i.e., di > d2, the right

172 SIMILARITY SEARCH

branch leading to a leaf with NNIDi is traversed. Reaching the leaf with
NNID, the insertion must be forwarded to the peer denoted by NNIDi and
the insert operation continues there.

In order to avoid redundant distance computations when searching the AST
on the other peer, a path, once-determined, in the original AST is forwarded
as well. The path is encoded as a bit-string called BPATH, where each node
is represented by one bit - "0" represents the left branch, " 1 " represents the
right branch. Every bit in this path is also accompanied by the respective serial
number of the inner node. This is used to recognize possible out-of-date entries
and if such entries are found, to update the AST with a more recent version.
(The mechanism is explained in Section 3.8).

When a BPATH is received by a peer, it helps to quickly traverse the AST,
because the distance computations to pivots are not repeated. During this quick
traversal, the only check is to see if the serial number of the respective inner
node equals the serial number stored in the BPATH. If not, the search resumes
with standard AST traversal, and the pivot distances are evaluated until the
traversal is finished.

To clarify the concept, see Figure 5.1. A BPATH representing the traversal
to the leaf node BID^ can be expressed as "1[2], 0[3]". First, the right branch
from the root (the first bit thus being one) is taken and the serial number of the
root node is two (denoted by the number in brackets). Then, the left branch with
serial number three (thus "0[3]" is the next item) is taken. Finally, reaching a
leaf node, the traversal is finished.

3,5 Range Search
Range search for query R{q, r) is processed as follows. By analogy to

insertion, the evaluation of a range search operation in GHT* also starts by
traversing the local AST of the peer which issued the query. However, a different
traversal condition is used in every inner node < pi,p2 >» specifically:

d{pi,q) -r < d{p2,q) + r, (5.1)

d{pi,q) + r>d{p2.q)-r, (5.2)

The right subtree of the inner node is traversed if Condition 5.1 qualifies and
the left subtree is traversed whenever Condition 5.2 holds. From the equations
derived from Lemma 1.4 of Chapter 1, it is clear that both conditions may
qualify for a particular range search. Therefore, multiple paths may qualify
and finally, multiple leaf nodes may be reached.

For all qualifying paths having an NNID pointer in their leaves, the query
request is recursively forwarded (including known BPATH) to identified peers
until a BID pointer is found in every leaf. If multiple paths point to the same
peer, only one request with multiple BPATH attachments is sent. The range

Parallel and distributed indexes 173

search condition is evaluated by the peers in every bucket determined by the
BID pointers, together forming the response as a set of qualifying objects.

3.6 Nearest Neighbor Search
In principle, there are two strategies for evaluating kNN queries. The first

starts with a very large query radius, covering all the data in a given dataset, to
identify the degree to which specific regions might contain searched neighbors.
The information is stored in a priority stack (queue) so that the most promising
regions are accessed first. As suitable objects are found, the search radius is
reduced and the stack adjusted accordingly. Though this strategy never accesses
regions which do not intersect the query region bounded by the distance from
the query object to its fc-th nearest neighbor, processing of regions is strictly
serial. On a single computer, the approach is optimal [Hjaltason and Samet,
1995], but it is not convenient for distributed environments aiming at exploiting
parallelism. The second strategy starts with a zero radius to locate the first
region to explore and then extends the radius to locate other candidate regions,
if the result-set is still not complete. The nearest neighbors search in the GHT*
structure adopts the second approach.

The algorithm first searches for a bucket which has a high probability of
containing nearest neighbors. In particular, it seeks a bucket in which the
query object would be stored using an insert operation. The accessed bucket's
objects are sorted according to their distances with respect to the query object
q. Assume there are at least k objects in the bucket, so that the first k objects,
the objects with the shortest distances to g, are candidates for the result-set.
However, there may be other objects in different buckets that are closer to the
query object than some of the candidates. In order to check this, a range search
is issued with the radius equal to the distance of the fc-th candidate. In this way,
a set of objects is obtained which always has cardinality greater than or equal
to k. If all the retrieved objects are sorted and only the first k possessing the
shortest distances are retained, the exact answer to the query is obtained.

If less than k objects are found during the search in the first bucket, another
strategy must be applied because the upper bound on the distance to the fc-th
nearest neighbor is unknown. The range search operation is once again exe-
cuted, but the radius must be estimated. If enough objects are returned from
the range query (at least k), the search is complete - the result is again the
first k objects from the sorted result of the range search. Otherwise, the radius
must be expanded and the search done again until enough objects are obtained.
There are two possible strategies for estimating the radius: (1) the optimistic
strategy, in which the number of distance computations is kept low but multiple
incremental range searches might be performed in order to retrieve all necessary
objects, and (2) the pessimistic strategy, which prefers bigger range radii at the
expense of additional distance computations.

174 SIMILARITY SEARCH

Optimistic strategy. The objective is to minimize the costs, i.e., the number of
buckets accessed and distance computations carried out, using a smalHsh radius,
at the risk of more iterations being necessary if not enough objects are found.
In the first iteration, the bounding radius of the candidates is used, i.e., the
distance to the last candidate, even though there are fewer than k candidates.
The optimistic strategy hopes that there will be enough objects in the other
buckets within this radius. Let x be the number of objects returned from the last
range query. If x > /c, the search is finished, because the result is guaranteed,
otherwise, the radius is expanded by factor 1 + ^ ^ and the algorithm iterates
again. The higher the number of missing objects, the more the radius is enlarged.

Pessimistic strategy. The estimated radius is chosen rather large so that the
probability of a next iteration is minimized, while risking excessive (though
parallel) bucket accesses and distance computations. To estimate the radius, the
distance between pivots of inner nodes is used, because the algorithm presumes
pivots are very distant. More specifically, the pessimistic strategy traverses the
AST from the leaf up to the tree root, using the distance between pivots of the
current node as the range radius. Every iteration climbs up one level in the
AST until the search terminates or the root is encountered. If there are still not
enough objects retrieved, the maximum distance of the metric is used and all
objects in the structure are examined.

3.7 Deletions and Updates of Objects
For simplicity reasons, the updates are not handled specifically. Instead, if

the algorithm needs to update an object, it first deletes the previous instance of
this object and inserts the new one.

The deletion of an object o takes place in two phases. First, a search is made
for a particular peer and a bucket containing the object being deleted. The insert
traversal algorithm is used for this. More specifically, the algorithm searches
for the leaf node in the AST containing the BID pointer b, where object o would
be inserted.

The bucket h is sought to determine whether the object is really there. If
not, the algorithm finishes, because the object is not present in the structure.
Otherwise, the object is removed from the bucket h.

At this point, an object has been removed from the structure. However, if
many objects are removed from buckets, the overall load of the GHT* structure
would degrade. Many nearly-empty buckets would also worsen efficiency at the
whole-system level. Therefore, an algorithm is provided to merge two buckets
into one in order to increase the load factor of the bucket.

First, the algorithm must detect (after a deletion) that the bucket has become
underfilled and needs to be merged. This can be easily implemented by, e.g.,
a minimal-load threshold for a bucket. Let AT̂ be the leaf node representing

Parallel and distributed indexes 175

Delete

CBTO^CBID^

(BID3 ; B I D 3 (BID2! BI]\)

Figure 5.4. Removing a bucket pointer from the AST.

the pointer to the underfilled bucket b. A bucket to merge with the underfilled
bucket must be found. The algorithm, as a rule, always merges the right bucket
with the left one, because after a split the original bucket stays in the left and
the new one goes to the right.

Let Np be the parent inner node of the node Ni^. If the node Â^ is a right
sub-node of the node Np, then the algorithm reinserts all the objects from the
underfilled bucket to the left subtree of node Np and removes node Np from the
AST, shrinking the path from the root. Similarly, if Â5 is a left sub-node, all
the objects from the right branch are taken and reinserted into the left branch,
and Np is removed from the AST. Possible bucket overflows are handled as
usual. To allow other peers to detect changes in the AST, the serial numbers of
all inner nodes in the subtree with root Np are incremented by one.

Figure 5.4 outlines the concept. We are removing the bucket BID3, so first
we reinsert the data to the left subtree of its parent (the shaded node). For every
object in BID^ we decide according to pivots in the left subtree (specifically,
the hatch-marked node) whether to go to bucket BIDi or bucket BID2. Then
we remove the leaf node with BIDs and, preserving the binary tree, we also
remove the parent node. One can also see that the serial numbers of the affected
nodes are incremented.

3.8 Image Adjustment
An important advantage of the GHT* structure is update independence. Dur-

ing object insertion, a peer can split an overflowing bucket without informing
other nodes in the network. Similarly, deletions may merge buckets. Conse-
quently, peers need not have their ASTs up-to-date with respect to the data,
but the advantage is that the network is not flooded with many "adjustment"
messages for every update. AST updates are thus postponed and actually done
when the respective insertion, deletion, or search operations are executed.

The inconsistency in the ASTs is recognized on a peer that receives an op-
eration request with corresponding BPATH from another peer. In fact, if the

176 SIMILARITY SEARCH

BPATH derived from the AST of the current peer is longer than the received
BPATH, this indicates that the sending peer has an out-of-date version of the
AST and must be updated. The other possibility is inconsistency between serial
numbers in the BPATH and the inner nodes of the AST. The current peer easily
determines a subtree that is missing or outdated on the sending peer because
the root of this subtree is the last correct element of the received BPATH. Such
a subtree is sent back to the peer through an Image Adjustment Message, lAM.

If multiple BPATHs are received by the current peer (which can occur in case
of range queries) several subtrees can be sent back through one I AM (including
all found inconsistencies). Naturally, the lAM process can also involve multiple
peers. Whenever a peer finds an NNID in its AST leaf during the path expansion,
the request must be forwarded to the located peer. This peer can also detect
an inconsistency and respond with an lAM. This image adjustment message
updates the ASTs of all previous peers, including the first peer starting the
operation. This is a recursive procedure which guarantees that, for an insertion,
deletion or a search operation, every involved peer is correctly updated.

Peer
NNIDj

' ^ v ^ c

Request

jply and I AM

Reply^

Peer
NNID2

Reply

Forward

Forwa

s ^ R e p l

vsR)rward

Peer
NNID 3

rd ^ V

Peer
NNID4 \

^ ^ ^

1 Peer
] NNID^

Figure 5.5. Message passing during a query and image adjustments.

An example of a communication during a query execution is given by Fig-
ure 5.5. At the beginning, the peer with NNIDi starts to evaluate a query.
According to its local AST the query must be forwarded to peer NNID2.
However, this peer detects that the BPATHs from the forwarded request are not
complete - i.e., using local AST of peer NNID2 the BPATHs are extended
and new leaf nodes with NNIDs, NNID4, and NNID^ are reached. There-
fore, the request is forwarded to those peers and processed there. The peers
were contacted by NNID2, so they respond with the query results back to
peer NNID2. Finally, peer NNID2 passes the responses to peer NNIDi as

Parallel and distributed indexes 111

the final result-set along with image adjustment, which is represented by the
respective subtrees of the local AST of the peer NNID2'

3,9 Logarithmic Replication Strategy
As explained previously, every inner node of the AST contains two pivots

and the AST structure is present in a more or less accurate form on every
peer. Therefore, the number of replicated pivots increases linearly with the
number of peers used. In order to reduce replication, the authors propose a
more economical strategy which achieves logarithmic replication among peers
at the cost of a moderately increased number of forwarded requests.

Peerl Peerl

Peer:

Logarithmic AST

Figure 5.6. Example of the logarithmic AST.

Inspired by the lazy updates strategy by [Johnson and Krishna, 1993], the
logarithmic replication scheme uses a slightly modified AST containing only
the necessary number of inner nodes. More precisely, the AST on a specific
peer stores only those nodes containing pointers to local buckets (i.e., leaf nodes
with BID pointers) and all their ancestors. However, the resulting AST is still
a binary tree which substitutes all subtrees leading exclusively to leaf nodes
with NNID pointers by the leftmost leaf node of the subtree. The rationale for
choosing the leftmost leaf node derives from the split strategy, which always
retains the left node and adds the right one. Figure 5.6 illustrates this principle.
In a way, the logarithmic AST can be seen as the minimum subtree of the fully
updated AST. The search operation with the logarithmic replication scheme
may require more forwarding (compared to the full replication scheme), but
replication is significantly reduced.

178 SIMILARITY SEARCH

3.10 Joining the Peer-to-Peer Network
The GHT* scales-up to process a large volume of data by utilizing more and

more peers. In principle, such an extension can be solved in several ways. In the
GRID infrastructure, for example, new peers are added by standard commands.
In the prototype implementation, authors use a pool of available peers known
to every active peer. They do not use a centralized registering service. Instead,
they exploit broadcast messaging to notify active peers about a new peer that has
become available. When a new network node becomes available, the following
actions occur:

• The new node with its NNID sends a broadcast message saying "I am here".
This message is received by each active peer in the network.

• The receiving peers add the announced NNID to their local pool of available
peers.

Additional storage and computational resources required by an active peer are
extended as follows:

• The active peer picks up one item from the pool of available peers. An
activation message is sent to the chosen peer.

• With another broadcast message, the chosen peer announces: "I am being
used now" so that other active peers can remove its NNID from their pools
of available peers.

• The chosen peer initializes its own pool of available peers, creates a copy
of the AST, and sends the caller the "Ready to serve" reply message.

The algorithm is illustrated in Figure 5.7, where the numbers represent the
messages sent in the order they appear. The white computer is a new peer
that has just joined the network. It announces its presence by an "I am here"
message (1) delivered to all other active peers. Then an active overloaded peer
(at top left) needs a new peer. It contacts the white peer in order to activate
it (2). The white peer broadcasts "I am being used now" to all others (3) and
responds with "Ready to serve" to the first peer (4).

If a peer does not want to be activated, it might respond to the first message
immediately saying that it is not available any more. The requesting peer then
removes it from its pool and continues with the next one.

3.11 Leaving the Peer-to-Peer Network
As stated in Section 1.2.2, peers may want to leave the network. The proposed

technique does not deal with the unexpected exit of peers which may occur due
to the unreliability in the network, operating system crashes among peers, etc.
To recover from such situations, replication and fault tolerance mechanisms are

Parallel and distributed indexes 179

Figure 5.7. New peer allocation using broadcast messages.

required to preserve data even if part of the system goes down unexpectedly.
However, this is stated by the authors of the GHT* to be a future research
challenge and has not yet been addressed. Therefore, if a peer wants to leave
the network, it must perform a clean-up first.

There are two kinds of peers - peers which store some data in their local
buckets and peers which do not. Those which do not provide use of their
storage may leave the system safely without causing problems and need not
inform the others. However, peers which hold data must first ensure that data is
not lost. In general, such a peer uses the deletion mechanism and reinserts the
data again, but without offering its storage capacity to the network any longer.
The peer thus gets rid of all its objects and does not receive new ones.

4. Performance Trials
In this section, we report on our experience with the distributed index GHT*

using the prototype implementation provided by its authors. This section further
expands upon Section 3 of Chapter 3, where we have provided some experimen-
tal results for centralized disk-based structures. To obtain experimental results
comparable to those of centralized structures, we have used the same datasets
and provide total costs incurred by similarity queries in GHT* in Section 4.2.1.
In Section 4.2.2, we show the enhancement of distributed computing, i.e., the
parallel costs, which represent the actual response time of the search system.
In both sections, we show results of range and nearest neighbors queries, which
are then compared with each other in Section 4.2.3.

The final group of experiments concentrates on the scalability aspects of
the GHT*. The point we would most like to emphasize in this section is that,
even with a huge and permanently growing dataset, the index distributed on
sufficient number of peers is able to maintain practically constant response
times to similarity queries.

180 SIMILARITY SEARCH

4.1 Datasets and Computing Infrastructure
We conducted our experiments using two real-life datasets. The first was a

dataset of 45-dimensional vectors of color image features (labeled VEC) com-
pared via the quadratic form distance function. The second dataset consisted of
sentences from the Czech language corpus (labeled STR), with the edit distance
function used to quantify sentence proximity. Both datasets contained 100,000
objects, vectors or sentences, respectively. Further details about these datasets
can be found in Section 3 of Chapter 3.

We used a local network of 100 workstations, which are publicly available for
students. The computers are connected by a high-speed 100Mbit switched net-
work with access times approximately 5ms. Since the computers have enough
memory, we used the simplest setting of the GHT* implementation, in which
the buckets are implemented as unordered lists of objects stored in RAM. How-
ever, more advanced settings are possible, such as organizing the buckets by
a centralized index, for example the M-tree or D-index, storing data on disks.
Such Schemas would additionally extend the efficiency of the distributed index,
but would also further complicate the evaluation of results and the comparison
with centralized indexes.

To achieve deterministic and reliable experimental results, we used the log-
arithmic replication schema for all participating peers. We also used a constant
number of buckets per peer and the same capacity for all buckets. Specifically,
every peer was capable of holding up to five buckets with a maximum 1,000
objects per bucket.

The computers were not exclusively dedicated to our performance trials. In
such an environment, it is practically impossible to maintain identical behavior
for each participating computer, and the speed and actual response times of the
computers may vary depending on their actual computational load. Therefore
we do not report absolute response times but rather the number of distance
computations to characterize CPU costs, the number of buckets accessed for
I/O costs, and the number of messages sent to indicate network communication
costs.

4.2 Performance of Similarity Queries
In order to study the performance of the GHT* for changing queries, we have

measured the costs of range and nearest neighbors queries for different sizes
of query radii and different numbers of neighbors, respectively. All inputs for
graphs in this section were obtained by averaging the results of fifty queries
with a different set of (randomly chosen) query objects and constant search
radius or number of neighbors, respectively.

Parallel and distributed indexes 181

4.2.1 Global Costs
A distributed structure uses the power of networked computers to speed up

query evaluation by parallel execution. However, every participating peer must
employ its resources and that naturally incurs some costs. In this section, we
provide the total costs needed to evaluate a query, i.e., the sum of costs for each
peer employed during the query execution.

In general, total costs are directly comparable to those of centralized indexes,
because these represent the costs the distributed structure would need if run on a
single computer. Of course, there are some additional costs due to the distributed
nature of the algorithms. In particular, a centralized structure incurs no network
communication costs.

Buckets Accessed (I/O costs). The first experiment focused on relationships
between query size and total number of buckets and peers accessed. For dif-
ferent radii of range queries. Figure 5.8 reports these results separately for the
VEC and STR datasets together with the number of retrieved objects (divided
by 100 for easier exposition). If the radius increases, the number of peers ac-
cessed grows practically linearly, the number of accessed buckets a bit faster.
However, the number of retrieved objects satisfying the query, i.e., the result-
set size, may grow exponentially. In general, this is in accordance with the I/O
behavior of centralized metric indexes such as the M-tree or the D-index on the
global (not distributed) scale.

VEC STR

70
60
50
40
30
20
10

J result set size/100
J buckets accessed
1 peers accessed

^^.^-^^^^^

-^z:^^::^"""
600 800 1,000 1,200 1,400 1,600

range query radius

140
120 result set size/100

buckets accessed
' peers accessed

5 10 15
range query radius

Figure 5.8. Average number of buckets, peers, and objects retrieved as a function of radius.

We have also measured these characteristics for kNN queries, and the results
are shown in Figure 5.9. We again report the number of buckets and peers
accessed with respect to the increasing value of fc. As should be clear, the value
k also represents the number of objects retrieved. These trials once again reveal
a behavior similar to centralized indexes - total costs are low for small values
of /c, but grow very rapidly as the number of neighbors increases.

182 SIMILARITY SEARCH

VEC STR

10,000 10,000

Figure 5.9. Average number of buckets, peers, and objects retrieved as a function of k.

Distance Computations (CPU costs). In the following experiments, we have
concentrated on the total cost of the similarity queries measured by the num-
ber of distance computations. Specifically, Figure 5.10 shows the results for
increasing radii of range queries. The total cost is the sum of all distance compu-
tations performed by every accessed peer in accessed buckets plus "navigation"
costs. The navigation cost is measured in terms of distance computations in the
AST (shown as a separate line). Since these costs are well below 1%, they can
be neglected for practical purposes. Observe that total costs have once again
been divided by 100.

250

200

150

100

50

n

VEC

p — total/100
H AST

-*• , "^^ \ , ,

STR

600 800 1,000 1,200 1,400
range query radius

1,600

300

5 250

3 200

i 150

0

_p total/lOO
1 AST

-

5 10 15
range query radius

20

Figure 5.10. Total and AST distance computations as a function of radius.

In Figure 5.11, we show total distance computation costs of kNN queries for
different values of k. The results were obtained similarly as for range queries,
and for convenience we provide the AST computations as well. It can be seen
that, even for the computationally more expensive nearest neighbors queries,
AST navigation costs are only marginal and can be neglected.

Parallel and distributed indexes 183

VEC STR
1,200

10,000

300

Ö 250
o
I 200
I
8 ^̂ ^
^ 100

I 50
''B

0

1 total/100
1 AST

-/^

^ ^

10 100
k

1,000 10,000

Figure 5.11. Total and AST distance computations as a function of k.

Compared to centralized indexes, the GHT* performs better than the sequen-
tial scan, but the M-tree and D-index achieve better results. However, the GHT*
can perform distance computations in parallel, which is the main advantage of
the distributed index. We elaborate on this issue in the next section.

Messages Sent (communication cost). Algorithms for the evaluation of simi-
larity queries in GHT* send messages whenever they need to access other peers.
More specifically, if an NNID pointer for the peer is encountered in a leaf node
during evaluation, a message is sent to that peer. These are termed request
messages. Messages destined for the same peer are sent together within one
message. Figures 5.12 and 5.13 depict the total number of request messages
sent by peers involved in a range and kNN search, respectively. We have also
measured the number of messages that had to be forwarded because of improper
addressing. This situation occurs when a request message arrives at a peer that
does not evaluate the query in its local buckets and only passes (forwards) the
message to a more appropriate peer. This cost is a little higher for the kNN
algorithm because its first phase needs to navigate to the proper bucket first.

Intuitively, the total number of (request) messages is strictly related to the
number of peers accessed. This fact is confirmed by trials using both range and
nearest neighbors queries. We have also observed that, even with the logarithmic
replication strategy, the average number of messages forwarded is below 15%
of the total number of messages sent during query execution. The process of
sending messages is specific to a distributed environment and therefore has no
adequate counterpart in centralized structures.

4.2.2 Parallel Costs

The objective of this section is to report results using the distributed structure
GHT*, with an emphasis on parallel costs. As opposed to the total costs, these

184 SIMILARITY SEARCH

VEC STR
1.4

1.2

1.0

0.8 F

0.6

request/10
J forward

600 800 1,000 1,200 1,400 1,600
range query radius

2.5

I 2.0
GO
00

i 1.5
I 1.0
1 0.5
d

0

1 request/10
-| forward

y^^^
5 10 15
range query radius

20

Figure 5.12. Average number of request and forward messages as a function of the radius.

VEC STR

10,000 10,000

Figure 5.13. Average number of request and forward messages as a function of the k.

correspond to the actual response time of the GHT* index structure to execute
similarity queries.

For our purposes, we define the parallel cost as the maximum of the serial
costs from all accessed peers. For example, to measure a parallel distance
computations cost during a range query, we gather the number of distance com-
putations on each peer accessed during the query. The maximum of those values
is the query's parallel cost, since the range query evaluation has practically no
serial component (except for the search in the AST on the first peer, which is
very low-cost and so can be neglected).

A different situation occurs during the execution of kNN queries, because
the kNN search algorithm consists of two phases, which cannot be performed
simultaneously. The parallel cost is therefore the sum of the parallel costs of
the respective phases. As explained in Section 3.6, the first phase navigates to
a single bucket seeking candidates for neighbors. The second phase consists of
a range query, for which we have already defined the parallel cost. However,
the second phase can be repeated when the number of objects retrieved is still

Parallel and distributed indexes 185

smaller than k. Finally, the parallel cost of a nearest neighbors query is the
sum of the cost of the first phase plus the parallel costs of every needed second
phase.

Buckets Accessed (I/O costs). The parallel costs for range queries, measured
as the maximal number of accessed buckets per peer, are summarized in Fig-
ure 5.14. Since the number of buckets per peer is bounded - our trials employed
maximally five buckets per peer - the parallel cost remains stable at around 4.3
buckets per peer. For this reason, the parallel range query cost scales well with
increasing query radius.

VEC STR

600 800 1,000 1,200 1,400
range query radius

1,600 5 10 15
range query radius

20

Figure 5.14. Parallel cost in accessed buckets as a function of radius.

A nearest neighbors query always requires one bucket access for the first
phase. Then multiple second phases may be required and their costs are added
to the resulting parallel cost. Figure 5.15 shows these results, with the number
of iterations in the second phase of the algorithm represented by the lower curve.
It can be seen that, for smaller values of k, only one iteration is needed and the
cost is somewhere around the value 5.4, consisting of 1.0 for the initial bucket
and 4.4 for the range query. As the value of k grows above the number of objects
in one bucket, more iterations are needed. Obviously, each additional iteration
represents a serial step of query execution, so the cost slightly increases, but the
increase is not doubled, because the algorithm never accesses buckets which
have already been processed. In any case, the number of iterations is not high
and in our experiments maximally two iterations were always sufficient.

Distance Computations (CPU costs). Parallel distance computations repre-
sented the major query execution cost in our trials, and can be considered an
accurate approximation to actual query response time. This is mainly thanks
to the fact that the time to access buckets and send messages is practically neg-
ligible compared to the evaluation of used distance metric functions. Recall

186 SIMILARITY SEARCH

VEC

. iterations
[^ bucket accessed

-

" • '

, , ,
10 100

k
1,000 10,000

STR

Iterations
bucket accessed

10 100
k

1,000 10,000

Figure 5.15. Parallel cost in accessed buckets with the number of iterations as a function of k.

that the computations of edit distance and quadratic form metric functions are
very time demanding - accessing a bucket in local memory costs microseconds,
while network communications can be achieved in tens of milliseconds.

We have applied a standard methodology: We have measured the number of
distance computations evaluated by each peer, and taken as the reported cost
the maximum of these values. Figure 5.16 shows results averaged for the same
set of fifty randomly chosen query objects and a specific radius. Since the
number of objects stored per peer is bounded (maximum five buckets per peer
and 1,000 objects per bucket), the cost would never exceed this value. Recall
that we do not consider AST costs, which are of no practical significance. Thus
the structure retains an essentially constant response time for any size of query
radius.

VEC

600 800 1,000 1,200 1,400 1,600
range query radius

30,000
o 25,000

3 20,000
CXi

1 15,000

o 10,000

^ 5,000
f\ 1

5 10 15
range query radius

20

Figure 5.16. Parallel cost in distance computations as a function of radius.

The situation is similar for kNN queries but the sequential components of
the search algorithm must be properly considered. The results are shown in
Figure 5.17 and represent the parallel costs for different numbers of neighbors
/c, measured in terms of distance computations. It can be seen that costs grow

Parallel and distributed indexes 187

very quickly to a value of around 5,000 distance computations. This value
represents the parallel cost of the range query plus the initial search for the first
bucket. Some increase in distance computations with k around 800 can also be
seen. This is caused by the added sequential phase of the algorithm, i.e., the
next iteration. The increase is not dramatic, since only some additional buckets
are searched to amend the result-set to k objects. This is in accordance with
the buckets accessed in parallel shown in Figure 5.14. It can be seen there that
only one additional "parallel" bucket was searched during the second iteration,
thus the increase in parallel distance computations may be maximally 1,000
(the capacity of a bucket).

16,000

g 14,000

I 12,000
" 10,000

8,000

6,000 |-

4,000

2,000

0

s

VEC STR

[

r y
r

B 12,000

1 10,000

1 8,000
^ 6,000

1 4,000
•'S 2,000

A

/^

-

10 100
k

1,000 10,000 10 100
k

1,000 10,000

Figure 5.17. Parallel cost in distance computations as a function of k.

Messages Sent (communication cost). Parallel communication cost is a bit
different from previous cases, since we cannot compute it "per peer". During
the evaluation of a query, every peer can send messages to several other peers,
but we can consider the cost of sending several messages to different peers equal
to the cost of sending only one message to a specific peer, since a peer sends
them all at once. Thus, the parallel communication cost consists of a chain
of forwarded messages, the sequential passing of the request to other peers.
The number of peers sequentially contacted during a search, is usually called
the hop count. In the GHT* algorithm, there can be several different "hop"
paths. For our purposes, we have taken the longest hop path, i.e., the path with
maximal hop count, as the parallel communication cost.

Figures 5.18 and 5.19 present the number of hops during a range and kNN
search, respectively. Our experimental trials show parallel communication is
essentially logarithmically proportional to the number of peers accessed (see
Figure 5.8), a desirable property in any distributed structure. The time spent
communicating can also be deduced from these graphs. However, it is hard to
see the contribution of this cost to the overall response time of a query, since
each peer first traverses its AST and forwards messages to the respective peers

188 SIMILARITY SEARCH

(if needed), and only then it begins to compute distances inside its buckets. So
the communication time is only added to the time spent computing the distances
in peers contacted subsequently, but these can have only a few objects in their
buckets. In this case, the overall response time is practically unaffected by
communication costs.

VEC STR

600 800 1,000 1,200 1,400 1,600
range query radius

5 10 15
range query radius

Figure 5.18. Number of parallel messages as a function of radius.

VEC STR

10,000 10,000

Figure 5.19. Number of parallel messages as a function of k.

4.2.3 Comparison of Search Algorithms
In principle, the nearest neighbors search can be solved by a range query,

provided a specific radius is known. After a kNN query has been solved,
it becomes trivial to execute the corresponding range query with a precisely
measured radius, i.e., using the distance from the query object to the /c-th re-
trieved object. However, such radius is generally unknown, so kNN queries
are typically more expensive. We have compared the costs in terms of distance
computations of the original nearest neighbors query execution with the costs

Parallel and distributed indexes 189

of the respective range query with exact radius. In what follows, we provide
both the parallel and total costs measured according to the methodology used
throughout this section.

VEC

16,000

14,000 H

12,000

. 10,000

8,000

6,000

4,000

2,000

0

J kNN total/10
1 kNN parallel

J range total/10
range parallel

/y ^

!^/'
^

7
10 100

k
1,000 10,000

STR

14,000

12,000

10,000

8,000

6,000

4,000

2,000

0

kNN total/10
H kNN parallel

range total/10
H range parallel

/ ^
LL ^^

10 100
k

1,000 10,000

Figure 5.20. Comparison of a kNN and range query returning k objects as a function of k.

The trials show kNN query execution costs are always slightly higher than
those of a comparable range query execution. In particular, total costs are
practically equal to those of the range query, mainly because the kNN algorithm
never accesses the same bucket twice. The difference is caused by the fact that
the estimated radius need not be optimal. A different situation can be observed
for parallel costs, since the kNN search needs some sequential execution steps,
thus diminishing the possibility for parallel execution. In Figure 5.20, the effects
of accessing the first bucket during the first phase of the kNN algorithm can
be clearly seen in the difference between the range and kNN parallel cost lines
in the graphs. The costs of the second iteration become visible after k > 800,
which further worsens the parallel response time of the nearest neighbors query.
However, the parallel response time is still comparable to that of the range query.
It is practically stable and does not grow markedly.

4.3 Data Volume Scalability
In this section, we detail our tests of scalability of the GHT*, i.e., the ability

to adapt to expanding datasets. To measure this experimentally, we have fixed
the query parameters by choosing two distinct query radii and three different
values for nearest neighbors k. The same set of fifty randomly chosen query
objects was employed during the experiment, with the graphs depicting average
values. Moreover, we have gradually expanded the original dataset to 1,000,000
objects. The following results were obtained as measures at particular stages
of incremental insertion. More specifically, we have measured intraquery and
interquery parallelism costs after every block of 2,000 inserted objects.

We quantify the intraquery parallelism cost as the parallel response of a query
measured in terms of distance computations. This is defined to be the maximum

190 SIMILARITY SEARCH

of costs incurred on peers involved in the query, including navigation costs in
the AST. Specifically, each accessed peer computes its internal cost as the sum
of the computations in its local AST, and the computations in its buckets visited
during the evaluation. The intraquery cost is then determined as the maximum
of the internal costs of all peers accessed during the evaluation.

Interquery parallelism is more difficult to quantify. To simplify it, we char-
acterize the interquery parallelism as the ratio of the number of peers involved
in a query to the total number of peers. In this way, we assume that the lower
the ratio, the higher the chances for other queries to be executed in parallel.
Naturally, such an assumption is valid only if each peer is used with equal
probability. In summary, the intraquery parallelism is proportional to the re-
sponse time of a query, while the interquery parallelism represents the relative
utilization of available computing resources.

VEC STR
4,000
3,500
3,000
2,500
2,000
1,500
1,000

500

range 600
range 1,500

200 400 600 800 1,000
dataset size (x 1,000)

200 400 600 800 1,000
dataset size (x 1,000)

Figure 5.21. Parallel cost as a function of dataset size for two different radii.

The results summarized in Figure 5.21 show intraquery parallelism remains
very stable, independently of dataset size. Thus the parallel search time, which
is proportional to this cost, remains practically constant, which is to be expected
from the fact that storage and computing resources are added gradually as the
size of the dataset grows. Of course, the number of distance computations
needed for traversing the AST grows with the size of the dataset. However, this
contribution is not visible. The reason is that AST growth is logarithmic, while
peer expansion is linear.

The nearest neighbors results shown in Figure 5.22 exhibit similar behavior,
only the absolute cost is a bit higher. This is incurred by the sequential steps of
the nearest neighbors search algorithm, consisting of locating the first bucket,
followed by possibly multiple sequential iterations. However, the cost is still
nearly constant, thus the query response remains unchanged even if the file
grows in size.

By contrast, the ratio shown in Figure 5.23 characterizing interquery paral-
lelism actually decreases as the dataset grows in size. This means the number
of peers involved during the query grows much more slowly than the number of

Parallel and distributed indexes 191

B 8,000

•-B 2,000

0 '

VEC

12,000

I 10,000 H
• 3 NN

100 NN
range for 3 NN
range for 100 NN

200 400 600 800 1,000
dataset size (x 1,000)

14,000

S 12,000

I 10,000

I 8,000
^ 6,000

I 4,000
^ 2,000

0

STR

- 3NN 1
- lOONN
• range for 3 NN
• range for 100 NN

200 400 600 800 1,000
dataset size (x 1,000)

Figure 5.22. Parallel cost as a function of dataset size for three different k.

VEC STR

200 400 600 800 1,000
dataset size (x 1,000)

200 400 600 800 1,000
dataset size (x 1,000)

Figure 5.23. Percentage of peers used as a function of dataset size for two different radii.

active peers, and thus the percentage of peers used to evaluate the query drops.
For example, with 1,000,000 objects inserted in the structure, only 21% of all
active peers were accessed in order to satisfy the query with the smaller radius.
This also means that, assuming an equal distribution of accessed peers, there
can be almost five totally independent queries solved on peers at the same time.
In other words, compared to the centralized solution, nearly five independent
queries are solved simultaneously with a response time identical to one such
query. Of course, this situation represents the ideal. But assuming a heavily
loaded system (one with a huge amount of queries executed), the response of a
particular query will not degrade as much as for a centralized structure, which
executes queries in a strictly serial way.

Concluding Summary

There is no doubt that the proliferation of new data types will lead to dramatic
change or the significant extension of a fundamental data processing paradigm,
that of search. It seems certain that the binary "YES" or "NO" classification for
retrieved versus undesired data will be replaced by an approximate assessment
of relevance. This naturally implies a sort of ranking with respect to a user-
defined reference, model, or other idealized specification of the data desired.
Though other possibilities are expected in the future, such a search paradigm is
typically fulfilled by similarity search.

Traditionally, search has been applied to structured (attribute-type) data
yielding records that exactly match the query. A more modem type of search,
similarity search, is used in content-based retrieval for queries involving com-
plex data types such as images, videos, time series, text documents and DNA se-
quences. Similarity search is based on approximate rather than exact relevance
using a distance metric that, together with the database, forms a mathematical
metric space. The obvious advantage of similarity search is that the results
can be ranked according to their estimated relevance. But currently prevalent
centralized similarity search mechanisms are time-consuming and not scalable,
thus only suitable for relatively small data collections.

Google-like Web search engines are based on specialized search mechanisms
for text documents and for HTML pages. Since less than 1% of Web data is in
text form, the rest being of a multimedia/streaming nature, the next-generation
of search needs to be expanded to accommodate these heterogeneous data types,
also taking into account datastreams produced by data sensors, the mobility of
data resources, as well as the variety of formats in which data may appear. It
is believed that the diversity and uncertainty of terminologies and schema-like
annotations will make precise querying on a Web scale elusive if not hopeless,
and that the same argument holds for large-scale networks of intra- and inter-
organizational data sources. As a consequence, traditional query processing
and search technology need to be supported by a powerful distributed comput-

194 SIMILARITY SEARCH

ing platform that will empower the next-generation relevance-ranked similarity
search methods.

It is estimated that 93% of data produced today is in digital format, and the
amount of data added each year is more than an exabyte (i.e. 10^^ bytes). This
is due in part to people and organizations collecting more data, e.g., digital
photographs, and making the data more accessible. It is also caused by new
technologies like peer-to-peer networks offering and exchanging huge volumes
of (mostly) multimedia data which already make up the majority of network
traffic on the Internet. The problem is visible not only on the World Wide Web,
but also in large data-producing organizations. The trend is toward a small and
shrinking subset of corporate information managed in database management
systems (10 to 15% today), with more and more relevant information existing
outside corporate databases. This trend is inevitable, due to the decentralization
and personalization of control and data. Examples include: office documents,
legal papers, technical references, regulations, marketing material, customer
relationship information, scientific and statistical data collections, biological
data, streams of volatile data from sensor networks, news tickers, video tapes,
telephone recordings, e-mail etc. An effective search solution to cope with
this exponential growth and diversity of data sources must consider two related
issues:

effectiveness - formulating (dis)similarity or proximity paradigms, and

efficiency - achieving the required performance over huge volumes of data.

The effectiveness of next-generation search requires new query techniques that
deal with inexact matching and heterogeneous data forms. The efficiency of
search requires innovative ideas about how to arrange and adjust computation
power, storage, and network resources to meet the requirements set by the
queries in a given context.

In this book, we have summarized the latest efforts in similarity searching us-
ing metric space as a suitable theoretical abstraction. We have demonstrated the
extensibility of this approach by examples of various distance measures, which
can be defined for virtually any application. We have specified theoretical con-
straints that can be applied for partitioning metric data into subsets, with the aim
of achieving efficient pruning during similarity query execution. Partitioning
principles lead to the formation of hierarchical (e.g. tree-like) index structures.
Building on such a hypothetical structure, we have explained related theoretical
research achievements to support efficient query processing, performance pre-
diction, and similarity search application through the transformation of metric
measures. Many similarity search index structures have been reported in an
extensive survey including corresponding search algorithms. Whenever possi-
ble, specific ideas have been contrasted with theoretical essentials. In greater
detail, we have described disk-oriented search structures, demonstrated how the

CONCLUDING SUMMARY 195

notion of approximation can significantly speed up retrieval, and reported on
the latest parallel and distributed efforts to cope with the problem of scalability.

In the future, finding a scalable solution to the search problem for large-
scale distributed heterogeneous data will constitute an important scientific and
technological breakthrough, overcoming the scalability limitations of present
solutions and today's research perspectives. It will have a big economic im-
pact, since it can generate technology for the next generation of integrated and
multipurpose search and query processing engines on the scale of the Web as
well as for intranet-scale information management infrastructures.

Searching for the most relevant data is essential, not only for personal use, but
also for applications like e-science, e-business, e-health, catastrophe manage-
ment, and many others. These new application domains require the relevance of
specific searches to be determined autonomously to avoid information overload
with false results. Furthermore, these application domains require new search
strategies for automatically searching multimedia data. Traditional centralized
search structures, as employed by today's search machines, will require radical
redesign and re-engineering to address these issues.

The biggest challenge for the search paradigm is to find self-organizing so-
lutions that evolve over time and still scale into the expected data volume quan-
tities. Such an initiative must be based on solid theoretical grounds to avoid
a quick but ad hoc solutions; these will sooner or later fail because their def-
initions lack rigor, and because their behavior is unpredictable. The research
should certainly go beyond the capabilities of the traditional computer science.
It should try to find inspiration in other areas, such as the social sciences, biol-
ogy, or mathematical theories of epidemic diseases.

Future pervasive computing and communication systems represent a big
challenge for the new kinds of searching. But at the same time, they offer a
great opportunity to find a successful solution. With the massive deployment of
computational resources, we need solutions which will fully exploit available
computational power, which very often lies idle or partly utilized. Such an
environment nevertheless not only provides a framework for scalability, it also
offers a possibility for performance tuning and customization for communities
of users.

In order to successfully replace or enhance still-predominant exact-match
search mechanisms, future solutions should be general-purpose and highly ex-
tensible. Only in this way will they be able to serve the vast collective of
potential users from different applications. Though a strong emphasis should
be placed upon theories and formal definitions, all hypotheses must be diligently
verified by extensive trials on the road to becoming candidates for successful
products.

References

[Aberer and Hauswirth, 2002] Aberer, K. and Hauswirth, M. (2002). An overview of Peer-to-
Peer information systems. In Li twin, W. and Levy, G., editors, Distributed Data & Structures
4, Records of the 4th International Meeting (WDAS 2002), Paris, France, March 20-23, 2002 ̂
volume 14 of Proceedings in Informatics, pages 171-188. Carleton Scientific.

[Alpkocak et al., 2002] Alpkocak, A., Danisman, T, and Ulker, T. (2002). A parallel similarity
search in high dimensional metric space using M-Tree. In Grigoras, D., Nicolau, A., Toursel,
B., and Folliot, B., editors. Proceedings of the NATO Advanced Research Workshop on
Advanced Environments, Tools, and Applications for Cluster Computing-Revised Papers
(IWCC 2001), Mangalia, Romania, September 1-6, 2001, volume 2326 of Lecture Notes in
Computer Science, psigQS 166-171. Springer.

[Alt et al., 1991] Alt, H., Behrends, B., and Blömer, J. (1991). Approximate matching of polyg-
onal shapes (extended abstract). In Proceedings of the 7th Annual Symposium on Computa-
tional Geometry (SCO 1991), pages 186-193. ACM Press.

[Amato, 2002] Amato, G. (2002). Approximate similarity search in metric spaces. PhD thesis.
Computer Science Department - University of Dortmund, August-Schmidt-Str. 12, 44221,
Dortmund, Germany, http://pc-erato2.iei.pi.cnr.it/amato/thesis/.

[Amato et al., 2003] Amato, G., Rabitti, F., Savino, P, and Zezula, P (2003). Region proxim-
ity in metric spaces and its use for approximate similarity search. ACM Transactions on
Information Systems (TOIS 2003), 21(2): 192-227. ACM Press.

[Apostolico and Galil, 1997] Apostolico, A. and Galil, Z. (1997). Pattern Matching Algorithms.
Oxford University Press.

[Aryaetal., 1998] Arya, S., Mount, D. M., Netanyahu, N. S., Silverman, R., and Wu, A. Y.
(1998). An optimal algorithm for approximate nearest neighbor searching in fixed dimen-
sions. Journal of ACM (JACM 1998), 45(6): 891-923. ACM Press.

[Aurenhammer, 1991] Aurenhammer, F. (1991). Voronoi diagrams - a survey of a fundamental
geometric data structure. ACM Computing Surveys (CSUR 1991), 23(3):345-405. ACM
Press.

http://pc-erato2.iei.pi.cnr.it/amato/thesis/

198 SIMILARITY SEARCH

[Baeza-Yates, 1997] Baeza-Yates, R. A. (1997). Searching: an algorithmic tour. In Kent, A.
and Wilhams, J. G., editors. Encyclopedia of Computer Science and Technology, volume 37,
pages 331-359. Marcel Dekker, Inc.

[Baeza-Yates et al., 1994] Baeza-Yates, R. A., Cunto, W., Manber, U., and Wu, S. (1994). Prox-
imity matching using fixed-queries trees. In Crochemore, M. and Gusfield, D., editors. Pro-
ceedings of the 5th Annual Symposium on Combinatorial Pattern Matching (CPM 1994),
Asilomar, California, USA, June 5-8, 1994, volume 807 of Lecture Notes in Computer Sci-
ence, pages 198-212. Springer, Berlin.

[Baeza-Yates and Navarro, 1998] Baeza-Yates, R. A. and Navarro, G. (1998). Fast approximate
string matching in a dictionary. In Proceedings of the 5th International Symposium on String
Processing and Information Retrieval (SPIRE 1998), Santa Cruz, Bolivia, September 9-11,
1998, pages 14^22. IEEE Computer Society.

[Barbara et al., 1997] Barbara, D., DuMouchel, W., Faloutsos, C., Haas, R J., Hellerstein, J. M.,
loannidis, Y E., Jagadish, H. V., Johnson, T., Ng, R. T., Poosala, V., Ross, K. A., and Sevcik,
K. C. (1997). The new jersey data reduction report. IEEE Data Engineering Bulletin,
20(4):3^5. IEEE Computer Society.

[Batko et al., 2004] Batko, M., Gennaro, C , Savino, R, and Zezula, R (2004). Scalable similar-
ity search in metric spaces. In Proceedings of the 6th Thematic Workshop of the EU Network
of Excellence DELOS on Digital Library Architectures, Cagliari, Italy, 24-25 June, 2004,
pages 213-224. Edizioni Libreria Progetto, Padova.

[Beckmann et al., 1990] Beckmann, N., Kriegel, H.-R, Schneider, R., and Seeger, B. (1990).
The R*-Tree: An efficient and robust access method for points and rectangles. In Garcia-
Molina, H. and Jagadish, H. V., editors. Proceedings of the ACM International Conference on
Management of Data (SIGMOD 1990), Atlantic City, NJ, May 23-25, 1990, pages 322-331.
ACM Press.

[Berchtold et al., 1997] Berchtold, S., Keim, D. A., and Kriegel, H.-R (1997). A cost model
for nearest neighbor search in high-dimensional data space. In Proceedings of the 16th ACM
Symposium on Principles of Database Systems (PODS 1997), Tucson, Arizona, USA, May
12-14, 1997, pages 78-96. ACM Press.

[Bern et al., 1993] Bern, M. W., Eppstein, D., and Teng, S.-H. (1993). Parallel construction
of quadtrees and quaUty triangulations. In Dehne, F. K. H. A., Sack, J.-R., Santoro, N.,
and Whitesides, S., editors, Proceedings of the 3rd Algorithms and Data Structures (WADS
1993), Montreal, Canada, August 11-13, 1997, volume 709 of Lecture Notes in Computer
Science, pages 188-199. Springer.

[Bespamyatnikh, 1995] Bespamyatnikh, S. (1995). An optimal algorithm for closest pair main-
tenance (extended abstract). InPeckham, J., editor. Proceedings of the 11th ACM Symposium
on Computational Geometry (SCG 1995), Vancouver, B.C., Canada, June 5-12, 1995, pages
152-161. ACM Press.

[Böhmetal., 2001] Böhm, C , Berchtold, S., and Keim, D. A. (2001). Searching in high-
dimensional spaces: Index structures for improving the performance of multimedia databases.
ACM Computing Surveys (CSUR 2001), 33(3):322-373. ACM Press.

[Bozkaya and Özsoyoglu, 1997] Bozkaya, T. and Özsoyoglu, Z. M. (1997). Distance-based
indexing for high-dimensional metric spaces. In Peckham, J., editor. Proceedings of the

REFERENCES 199

ACM International Conference on Management of Data (SIGMOD 1997), Tucson, Arizona,
USA, May 13-15, 1997, pages 357-368. ACM Press.

[Bozkaya and Özsoyoglu, 1999] Bozkaya, T. and Özsoyoglu, Z. M. (1999). Indexing large
metric spaces for similarity search queries. ACM Transactions on Database Systems (TODS
19991 24(3):361^04. ACM Press.

[Brin, 1995] Brin, S. (1995). Near neighbor search in large metric spaces. In Dayal, U., Gray,
P. M. D., and Nishio, S., editors, Proceedings of the 21th International Conference on Very
Large Data Bases (VLDB 1995), Zurich, Switzerland, September 11-15, 1995, pages 574-
584. Morgan Kaufmann.

[Bugnion et al., 1993] Bugnion, E., Fhei, S., Roos, T., Widmayer, P, and Widmer, F. (1993). A
spatial index for approximate multiple string matching. In Baeza-Yates, R. A. and Ziviani,
N., editors, Proceedings of the 1st South American Workshop on String Processing (WSP
1993), Belo Horizonte, Brazil, September 13-15, 1993, pages 43-53.

[Burden et al., 1978] Burden, R., Faires, J. D., and Reynolds, A. (1978). Numerical Analysis.
Prindle, Weber & Schmidt.

[Burkhard and Keller, 1973] Burkhard, W. A. and Keller, R. M. (1973). Some approaches to
best-match file searching. Communications of the ACM (CACM1973), 16(4): 230-236. ACM
Press.

[Bustos et al., 2001] Bustos, B., Navarro, G., and Chavez, E. (2001). Pivot selection techniques
for proximity searching in metric spaces. In Proceedings of the 21st Conference of the Chilean
Computer Science Society (SCCC 2001), Punta Arenas, Chile, November 6-8, 2001, pages
33-40. IEEE Computer Society.

[Callahan and Kosaraju, 1995] Callahan, P B. and Kosaraju, S. R. (1995). Algorithms for dy-
namic closest pair and n-body potential fields. In Proceedings of the 6th ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA 1995), San Francisco, California, January 22-24, 1995,
pages 263-272. ACM Press.

[Carreira-Perpinan, 1997] Carreira-Perpinan, M. A. (1997). A review of dimension reduction
techniques. Technical Report CS-96-09, Department of Computer Science, University of
Sheffield, UK.

[Castelman, 1996] Castelman, K. R. (1996). Digital Image Processing. Prentice-Hall, Inc.

[Cetintemel et al., 2000] Cetintemel, U., Franklin, M. J., and Giles, C. L. (2000). Self-adaptive
user profiles for large-scale data delivery. In Proceedings of the 16th International Conference
on Data Engineering (ICDE 2000), San Diego, California, USA, February 28 - March 3,
2000, pages 622-633. IEEE Computer Society.

[Chavez et al., 1999a] Chavez, E., Marroquin, J. L., and Baeza-Yates, R. A. (1999a). Spaghettis:
An array based algorithm for similarity queries in metric spaces. In Proceedings of the 6th
International Symposium on String Processing and Information Retrieval & International
Workshop on Groupware (SPIRE/CRIWG 1999), Cancun, Mexico, September 21-24, 1999,
pages 38-46. IEEE Computer Society.

[Chavez et al., 1999b] Chavez, E., Marroquin, J. L., and Navarro, G. (1999b). Overcoming
the curse of dimensionality. In Procedings of the European Workshop on Content-Based
Multimedia Indexing (CBMI1999), Toulouse, France, October 25-27, 1999, pages 57-64.

200 SIMILARITY SEARCH

[Chavez et al., 2001a] Chavez, E., Marroquin, J. L., and Navarro, G. (2001a). Fixed Queries
Array: A fast and economical data structure for proximity searching. Multimedia Tools and
Applications, 14(2): 113-135. Kluwer Academic Pubhshers.

[Chavez et al., 2001b] Chavez, E., Navarro, G., Baeza-Yates, R. A., and Marroquin, J. L.
(2001b). Searching in metric spaces. ACM Computing Surveys (CSUR 2001), 33(3):273-321.
ACM Press.

[Chiueh, 1994] Chiueh, T. (1994). Content-based image indexing. In Bocca, J. B., Jarke, M.,
and Zaniolo, C , editors. Proceedings of the 20th International Conference on Very Large
Data Bases (VLDB1994), Santiago de Chile, Chile, September 12-15, 1994, pages 582-593.
Morgan Kaufmann.

[Chomicki, 2002] Chomicki, J. (2002). Querying with intrinsic preferences. In Jensen, C. S.,
Jeffery, K. G., Pokomy, J., Saltenis, S., Bertino, E., Böhm, K., and Jarke, M., editors. Proceed-
ings of the 8th International Conference on Extending Database Technology (EDBT2002),
Prague, Czech Republic, March 25-27, 2002, volume 2287 of Lecture Notes in Computer
Science, pages 34-51. Springer.

[Ciaccia et al., 2000] Ciaccia, P., Montesi, D., Penzo, W., andTrombetta, A. (2000). Imprecision
and user preferences in multimedia queries: A generic algebraic approach. In Proceedings
of the 1st International Symposium on Foundations of Information and Knowledge Systems
(FoIKS 2000), Burg, Germany, February 14-17, 2000, volume 1762 of Lecture Notes in
Computer Science, pages 50-71. Springer.

[Ciaccia et al., 1999] Ciaccia, P., Nanni, A., and Patella, M. (1999). A query-sensitive cost
model for similarity queries with M-tree. In Proceedings of the 10th Australasian Database
Conference (ADC 1999), Auckland, New Zealand, January 18-21, 1999, volume 21(2) of
Australian Computer Science Communications, pages 65-76. Springer.

[Ciaccia and Patella, 1998] Ciaccia, P and Patella, M. (1998). Bulk loading the M-tree. In
Proceedings of the 9th Australasian Database Conference (ADC 1998), Perth, Australia,
February 2-3, 1998, volume 20(2) of Australian Computer Science Communications, pages
15-26. Springer.

[Ciaccia and Patella, 2000a] Ciaccia, P and Patella, M. (2000a). The M^-tree: Processing com-
plex multi-feature queries with just one index. In Proceedings of the First DELOS Network of
Excellence Workshop on Information Seeking, Searching and Querying in Digital Libraries,
Zurich, Switzerland, December 11-12, 2000.

[Ciaccia and Patella, 2000b] Ciaccia, P and Patella, M. (2000b). PAC nearest neighbor queries:
Approximate and controlled search in high-dimensional and metric spaces. In Proceedings of
the 16th International Conference on Data Engineering (ICDE2000), San Diego, California,
USA, February 28 - March 3, 2000, pages 244-255. IEEE Computer Society.

[Ciaccia and Patella, 2002] Ciaccia, P. and Patella, M. (2002). Searching in metric spaces with
user-defined and approximate distances. ACM Transactions on Database Systems (TODS
2002), 27(4):398-437. ACM Press.

[Ciaccia et al., 1997a] Ciaccia, P, Patella, M., Rabitti, P., and Zezula, P (1997a). The M-tree
Project. Available at http://www-db.deis.unibo.it/Mtree/.

[Ciaccia et al., 1997b] Ciaccia, P, Patella, M., and Zezula, P (1997b). M-tree: An efficient
access method for similarity search in metric spaces. In Jarke, M., Carey, M. J., Dittrich,

http://www-db.deis.unibo.it/Mtree/

REFERENCES 201

K. R., Lochovsky, F. H., Loucopoulos, P., and Jeusfeld, M. A., editors, Proceedings of the
23rd International Conference on Very Large Data Bases (VLDB 1997), Athens, Greece,
August 25-29, 1997, pages 426-435. Morgan Kaufmann.

[Ciaccia et al., 1998a] Ciaccia, P., Patella, M., and Zezula, P. (1998a). A cost model for simi-
larity queries in metric spaces. In Proceedings of the 17th ACM Symposium on Principles
of Database Systems (PODS 1998), Seattle, Washington, USA, June 1-3, 1998, pages 59-68.
ACM Press.

[Ciaccia et al., 1998b] Ciaccia, P., Patella, M., and Zezula, P. (1998b). Processing complex
similarity queries with distance-based access methods. In Schek, H.-J., Saltor, F., Ramos,
I., and Alonso, G., editors. Proceedings of the 6th International Conference on Extending
Database Technology (EDBT1998), Valencia, Spain, March 23-27, 1998, volume 1377 of
Lecture Notes in Computer Science, pages 9-23. Springer.

[Clarkson, 1997] Clarkson, K. L. (1997). Nearest neighbor queries in metric spaces. In Pro-
ceedings of the 29th Annual ACM Symposium on Theory of Computing (STOC 1997), El
Paso, Texas, USA, May 4-6, 1997, pages 609-617. ACM Press.

[Cobena et al., 2002] Cobena, G., Abiteboul, S., and Marian, A. (2002). Detecting changes in
XML documents. In IEEE International Conference on Data Engineering (ICDE2002), San
Jose, California, USA, February 26 - March 1, 2002, pages 41-52. IEEE Computer Society.

[Comer, 1979] Comer, D. (1979). Ubiquitous B-Tree. ACM Computing Surveys (CSUR 1979),
11(2):121-137. ACM Press.

[Critchlow, 1985] Critchlow, D. E. (1985). Metric Methods for Analyzing Partially Ranked
Data, volume 34 of Lecture Notes in Statistics. Springer.

[Dehne and Noltemeier, 1987] Dehne, F. K. H. A. and Noltemeier, H. (1987). Voronoi trees
and clustering problems. Information Systems (IS 1987), 12(2): 171-175. Elsevier.

[DeWitt and Gray, 1992] DeWitt, D. J. and Gray, J. (1992). Parallel database systems: The
future of high performance database systems. Communications of the ACM (CACM1992),
35(6):85-98. ACM Press.

[Diaconis, 1988] Diaconis, P. (1988). Group Representations in Probability and Statistics,
volume 11 of IMS Lecture Notes - Monograph Series. Institute of Mathematical Statistics,
Hawyard California.

[Dohnal, 2004] Dohnal, V. (2004). Indexing Structures fro Searching in Metric Spaces.
PhD thesis. Faculty of Informatics, Masaryk University in Brno, Czech Republic.
http://w w w. fi. muni. czrxdohnal/phd-thesis. pdf.

[Dohnal et al., 2001] Dohnal, V., Gennaro, C , Savino, P, and Zezula, P (2001). Separable
splits in metric data sets. In Celentano, A., Tanca, L., and Tiberio, P., editors. Proceedings
of the 9th Italian Symposium on Advanced Database Systems (SEBD 2001), Venezia, Italy,
June 27-29, 2001, pages 45-62. LCM Selecta Group - Milano.

[Dolinal et al., 2003a] Dohnal, V., Gennaro, C , Savino, R, and Zezula, P (2003a). D-Index:
Distance searching index for metric data sets. Multimedia Tools and Applications, 21(1):9-
33. Kluwer Academic Publishers.

http://w

202 SIMILARITY SEARCH

[Dohnal et al., 2002] Dohnal, V., Gennaro, C , andZezula, P. (2002). A metric index for approx-
imate text management. In Proceedings of the lASTED International Conference Information
Systems and Databaseso (ISDB 2002), Tokyo, Japan, September 25-27, 2002, pages 37-42.
ACTA Press.

[Dohnal et al., 2003b] Dohnal, V., Gennaro, C , and Zezula, P (2003b). Similarity join in metric
spaces using eD-Index. In Mafik, V., Retschitzegger, W., and Stepänkovä, O., editors. Pro-
ceedings of the 14th International Conference on Database and Expert Systems Applications
(DEXA 2003), Prague, Czech Republic, September 1-5, 2003, volume 2736 of Lecture Notes
in Computer Science, pages 484-493. Springer.

[Duda and Hart, 1973] Duda, R. O. and Hart, P E. (1973). Pattern Classification and Scene
Analysis. Wiley, New York.

[Dunteman, 1989] Dunteman, G. H. (1989). Principal Component Analysis (Quantitative Ap-
plications in the Social Sciences). SAGE Publications.

[Dwork et al., 2001] Dwork, C , Kumar, R., Naor, M., and Sivakumar, D. (2001). Rank ag-
gregation methods for the web. In Proceedings of the 10th International World Wide Web
Conference (WWW 2001), Hong Kong, China, May 1-5, 2001, pages 613-622. ACM Press.

[Egecioglu and Ferhatosmanoglu, 2000] Egecioglu, Ö. and Ferhatosmanoglu, H. (2000). Di-
mensionality reduction and similarity computation by inner product approximations. In
Proceedings of the ACM International Conference on Information and Knowledge Manage-
ment (CIKM2000), McLean, Virginia, USA, November 6-11, 2000, pages 219-226. ACM
Press.

[Fagin, 1996] Fagin, R. (1996). Combining fuzzy information from multiple systems. In Pro-
ceedings of the 15th ACM Symposium on Principles of Database Systems (PODS 1996),
Montreal, Canada, June 3-5, 1996, pages 216-226. ACM Press.

[Fagin, 1998] Fagin, R. (1998). Fuzzy queries in multimedia database systems. In Proceedings
of the 17th ACM Symposium on Principles of Database Systems (PODS 1998), Seattle,
Washington, June 1-3, 1998, pages 1-10. ACM Press.

[Faloutsos et al., 1994] Faloutsos, C , Barber, R., Flickner, M., Hafner, J., Niblack, W., Petkovic,
D., and Equitz, W. (1994). Efficient and effective querying by image content. Journal of
Intelligent Information Systems (JUS 1994), 3(3/4):231-262. Kluwer Academic Publishers.

[Faloutsos and Kamel, 1994] Faloutsos, C. and Kamel, I. (1994). Beyond uniformity and in-
dependence: Analysis of R-trees using the concept of fractal dimension. In Proceedings of
the 13th ACM Symposium on Principles of Database Systems (PODS 1994), Minneapolis,
Minnesota, USA, May 24-26, 1994, pages 4-13. ACM Press.

[Faloutsos and Lin, 1995] Faloutsos, C. and Lin, K.-I. (1995). FastMap: A fast algorithm for
indexing, data-mining and visualization of traditional and multimedia datasets. In Carey,
M. J. and Schneider, D. A., editors, Proceedings of the 18th ACM International Conference
on Management of Data (SIGMOD 1995), San Jose, California, USA, May 22-25, 1995,
pages 163-174. ACM Press.

[Ferhatosmanoglu et al., 2000] Ferhatosmanoglu, H., Tuncel, E., Agrawal, D., and Abbadi,
A. E. (2000). Vector approximation based indexing for non-uniform high dimensional data
sets. In Proceedings of the ACM International Conference on Information and Knowledge

REFERENCES 203

Management (CIKM 2000), McLean, Virginia, USA, November 6-11, 2000, pages 202-209.
ACM Press.

[Ferhatosmanoglu et al., 2001] Ferhatosmanoglu, H., Tuncel, E., Agrawal, D., and Abbadi,
A. E. (2001). Approximate nearest neighbor searching in multimedia databases. In Proceed-
ings of the 17th International Conference on Data Engineering (ICDE 2001), Heidelberg,
Germany, April 2-6, 2001, pages 503-511. IEEE Computer Society.

[Frakes and Baeza-Yates, 1992] Frakes, W. and Baeza-Yates, R. A. (1992). Information Re-
trieval: Data Structures and Algorithms, chapter 10, pages 219-240. Prentice-Hall, Inc.

[Fukunaga, 1990] Fukunaga, K. (1990). Introduction to Statistical Pattern Recognition. Aca-
demic Press, second edition.

[Gaede and Günther, 1998] Gaede, V. and Günther, O. (1998). Multidimensional access meth-
ods. ACM Computing Surveys (CSUR 1998), 30(2): 170-231. ACM Press.

[Garcia et al., 1998] Garcia, Y J., Lopez, M. A., and Leutenegger, S. T. (1998). On optimal
node splitting for R-trees. In Gupta, A., Shmueli, O., and Widom, J., editors. Proceedings of
the 24th International Conference on Very Large Data Bases (VLDB 1998), New York City,
New York, USA, August 24-27, 1998, pages 334-344. Morgan Kaufmann.

[Gennaro et al., 2001] Gennaro, C , Savino, P., andZezula, P. (2001). Similarity search in metric
databases through hashing. In Proceedings of the 3rd ACM Multimedia 2001 Workshop on
Multimedia Information Retrieval (MIR 2001), Ottawa, Ontario, Canada, October 5, 2001,
pages 1-5. ACM Press.

[Gravano et al., 2001] Gravano, L., Ipeirotis, P. G., Jagadish, H. V., Koudas, N., Muthukrishnan,
S. M., and Srivastava, D. (2001). Approximate string joins in a database (almost) for free.
In Apers, P. M. G., Atzeni, P., Ceri, S., Paraboschi, S., Ramamohanarao, K., and Snodgrass,
R. T., editors. Proceedings of the 27th International Conference on Very Large Data Bases
(VLDB 2001), Roma, Italy, September 11-14, 2001, pages 491-500. Morgan Kaufmann.

[Gresho and Gray, 1992] Gresho, A. and Gray, R. M. (1992). Vector Quantization and Signal
Compression, volume 159. Kluwer Academic Publishers, Boston, MA.

[Guha et al., 2002] Guha, S., Jagadish, H. V., Koudas, N., Srivastava, D., and Yu, T. (2002).
Approximate XML joins. In Franklin, M. J., Moon, B., and Ailamaki, A., editors, Proceedings
of the ACM International Conference on Management of Data (SIGMOD 2002), Madison,
Wisconsin, USA, June 3-6, 2002, pages 287-298. ACM Press.

[Guttman, 1984] Guttman, A. (1984). R-Trees: A dynamic index structure for spatial searching.
In Yormark, B., editor. Proceedings of the ACM International Conference on Management of
Data (SIGMOD 1984), Boston, Massachusetts, USA, June 18-21, 1984, pages 47-57. ACM
Press.

[Hafner et al., 1995] Hafner, J. L., Sawhney, H. S., Equitz, W., Flickner, M., and Niblack, W.
(1995). Efficient color histogram indexing for quadratic form distance functions. IEEE
Transactions on Pattern Analysis and Machine Intelligence (TPAMI1995), 17(7):729-736.
IEEE Computer Society.

[Hjaltason and Samet, 1995] Hjaltason, G. R. and Samet, H. (1995). Ranking in spatial
databases. In Egenhofer, M. J. and Herring, J. R., editors. Proceedings of the 4th Inter-
national Symposium on Advances in Spatial Databases (SSD 1995), Portland, Maine, USA,
August 6-9,1995, volume 951 of Lecture Notes in Computer Science, pages 83-95. Springer.

204 SIMILARITY SEARCH

[Hjaltason and Samet, 1999] Hjaltason, G. R. and Samet, H. (1999). Distance browsing in
spatial databases. ACM Transactions on Database Systems (TODS 1999), 24(2):265-318.
ACM Press.

[Hjaltason and Samet, 2000] Hjaltason, G. R. and Samet, H. (2000). Incremental similarity
search in multimedia databases. Technical Report CS-TR-4199, Computer Science Depart-
ment, University of Maryland, College Park.

[Hjaltason and Samet, 2003a] Hjaltason, G. R. and Samet, H. (2003a). Index-driven similarity
search in metric spaces. ACM Transactions on Database Systems (TODS 2003), 28(4):517-
580. ACM Press.

[Hjaltason and Samet, 2003b] Hjaltason, G. R. and Samet, H. (2003b). Properties of embedding
methods for similarity searching in metric spaces. IEEE Transactions on Pattern Analysis
and Machine Intelligence (TPAMI2003), 25(5):530-549. IEEE Computer Society.

[Hoel et al., 1971] Hoel, P G., Port, S. C , and Stone, C. J. (1971). Introduction to Probability
Theory. Houghton Mifflin Company.

[Huttenlocher et al., 1993] Huttenlocher, D. P, Klanderman, G. A., andRucklidge, W. J. (1993).
Comparing images using the Hausdorff distance. IEEE Transactions on Pattern Analysis and
Machine Intelligence (TPAMI1993), 15(9): 850-863. IEEE Computer Society.

[Johnson and Krishna, 1993] Johnson, T. and Krishna, P. (1993). Lazy updates for distributed
search structure. In Proceedings of the ACM International Conference on Management of
Data (SIGMOD 1993), Washington, D.C, May 26-28, 1993, volume 22(2), pages 337-346.
ACM Press.

[Kailath, 1985] Kailath, T. (1985). Modern Signal Processing. Springer.

[Kalantari and McDonald, 1983] Kalantari, I. and McDonald, G. (1983). A data structure and
an algorithm for the nearest point problem. IEEE Transactions on Software Engineering
(TSE 1983), 9(5):631-634. IEEE Computer Society.

[Kamel and Faloutsos, 1993] Kamel, I. and Faloutsos, C. (1993). On packing R-Trees. In
Bhargava, B. K., Finin, T. W., and Yesha, Y., editors, Proceedings of the 2nd International
conference on Information and Knowledge Management (CIKM 1993), Washington, D.C,
USA, November 1-5, 1993, pages 490-499. ACM Press.

[Kaufman and Rousseeuw, 1990] Kaufman, L. and Rousseeuw, P. J. (1990). Finding Groups
in Data: An Introduction to Cluster Analysis. Wiley-Interscience.

[Kelly, 1955] Kelly, J. L. (1955). General Topology. D. Van Nostrand, New York.

[Kohonen, 1984] Kohonen, T. (1984). Self-Organization and Associative Memory. Springer.

[Kollios et al., 1999] Kollios, G., Gunopulos, D., and Tsotras, V. J. (1999). Nearest neighbor
queries in a mobile environment. In Proceedings of the Internation Workshop on Spatio-
Temporal Database Management (STDBM 1999), Edinburgh, Scotland, September 10-11,
1999, volume 1678 of Lecture Notes in Computer Science, pages 119-134. Springer.

[Kom and Muthukrishnan, 2000] Kom, F. and Muthukrishnan, S. M. (2000). Influence sets
based on reverse nearest neighbor queries. In Proceedings of the ACM International Con-
ference on Management of Data (SIGMOD 2000), Dallas, Texas, USA, May 16-18, 2000,
pages 201-212. ACM Press.

REFERENCES 205

[Kruskal, 1956] Kruskal, J. B. (1956). On the shortest spanning subtree of a graph and the
traveUng salesman problem. In Proceedings of the American Mathematical Society, volume 7,
pages 48-50. American Mathematical Society.

[Lee, 2002] Lee, D. (2002). Query Relaxation for XML Model. PhD thesis. University of
California, Los Angeles, California, USA.

[Leopold, 2001] Leopold, C. (2001). Parallel and Distributed Computing: A Survey of Models,
Paradigms and Approaches. John Wiley & Sons, Inc.

[Levenshtein, 1965] Levenshtein, V. I. (1965). Binary codes capable of correcting spurious
insertions and deletions of ones. Problems of Information Transmission, 1:8-17. Kluwer
Academic Publishers.

[Li et al., 2002] Li, C , Chang, E., Garcia-Molina, H., and Wiederhold, G. (2002). Clustering for
approximate similarity search in high-dimensional spaces. IEEE Transactions on Knowledge
and Data Engineering (TKDE 2002), 14(4):792-808. IEEE Computer Society.

[Litwin et al., 1996] Litwin, W., Neimat, M.-A., and Schneider, D. A. (1996). LH* - a scalable,
distributed data structure. ACM Transactions on Database Systems (TODS 1996), 21(4):480-
525. ACM Press.

[MacQueen, 1967] MacQueen, J. B. (1967). Some methods for classification and analysis of
multivariate observations. In Proceedings of the 5th Berkeley Symposium on Mathematical
Statistics and Probability, pages 281-297. University of California Press.

[Mico et al., 1996] Mico, M. L., Oncina, J., and Carrasco, R. C. (1996). A fast branch & bound
nearest neighbour classifier in metric spaces. Pattern Recognition Letters, 17(7):731-739.
Elsevier.

[Mico et al., 1992] Mico, M. L., Oncina, J., and Vidal, E. (1992). An algorithm for finding
nearest neighbors in constant average time with a linear space complexity. In Proceedings
of the 11th International Conference on Pattern Recognition (ICPR 1992), The Hague, The
Netherlands, volume II, pages 557-560.

[Mico et al., 1994] Mico, M. L., Oncina, J., and Vidal, E. (1994). A new version of the nearest-
neighbour approximating and eliminating search algorithm (AES A) with linear preprocessing
time and memory requirements. Pattern Recognition Letters, 15(1):9-17. Elsevier.

[Moreno-Seco et al., 2003] Moreno-Seco, P., Mico, M. L., and Oncina, J. (2003). A modifi-
cation of the LAES A algorithm for approximated k-NN classification. Pattern Recognition
Letters, 24(l-3):47-53. Elsevier.

[Narasimhalu et al., 1997] Narasimhalu, A. D., Kankanhalli, M. S., and Wu, J.-K. (1997).
Benchmarking multimedia databases. Multimedia Tools and Applications, 4(3):333-356.
Kluwer Academic Publishers.

[Navarro, 1999] Navarro, G. (1999). Searching in metric spaces by spatial approximation.
In Proceedings of the 6th International Symposium on String Processing and Information
Retrieval (SPIRE 1999), Cancun, Mexico, September 21-24, 1999, pages 141-148. IEEE
Computer Society.

[Navarro, 2001] Navarro, G. (2001). A guided tour to approximate string matching. ACM
Computing Surveys (CSUR 2001), 33(l):31-88. ACM Press.

206 SIMILARITY SEARCH

[Navarro, 2002] Navarro, G. (2002). Searching in metric spaces by spatial approximation. The
VLDB Journal, ll(l):28-46. Springer.

[Navarro and Reyes, 2002] Navarro, G. and Reyes, N. (2002). Fully dynamic spatial approxi-
mation trees. In Laender, A. H. F. and Oliveira, A. L., editors, Proceedings of the 9th Inter-
national Symposium on String Processing and Information Retrieval (SPIRE 2002), Lisbon,
Portugal, September 11-13, 2002, volume 2476 of Lecture Notes in Computer Science, pages
254-270. Springer.

[Noltemeier, 1989] Noltemeier, H. (1989). Voronoi trees and applications. In International
Workshop on Discrete Algorithms and Complexity, Fukuoka, Japan, November, 1989, pages
69-74.

[Noltemeier et al., 1992a] Noltemeier, H., Verbarg, K., and Zirkelbach, C. (1992a). A data struc-
ture for representing and efficient querying large scenes of geometric objects: MB* Trees.
In Geometric Modelling, volume 8 of Computing Supplement, pages 211-226. Springer.

[Noltemeier et al., 1992b] Noltemeier, H., Verbarg, K., and Zirkelbach, C. (1992b).
Monotonous Bisector* Trees - a tool for efficient partitioning of complex scenes of geo-
metric objects. In Data Structures and Efficient Algorithms, volume 594 of Lecture Notes in
Computer Science, pages 186-203. Springer.

[Ogras and Ferhatosmanoglu, 2003] Ogras, Ü. Y. and Ferhatosmanoglu, H. (2003). Dimen-
sionality reduction using magnitude and shape approximations. In Proceedings of the ACM
International Conference on Information and Knowledge Management (CIKM 2003), New
Orleans, Louisiana, USA, November 3-8, 2003, pages 99-107. ACM Press.

[Oppenheim et al., 1999] Oppenheim, A. V, Schäfer, R. W., and Buck, J. R. (1999). Discrete-
Time Signal Processing (2nd edition). Prentice-Hall, Inc.

[Ortega-Binderberger et al., 2002] Ortega-Binderberger, M., Chakrabarti, K., and Mehrotra, S.
(2002). An approach to integrating query refinement in sql. In Jensen, C. S., Jeffery, K. G.,
Pokomy, J., Saltenis, S., Bertino, E., Böhm, K., and Jarke, M., editors. Proceedings of the 8th
International Conference on Extending Database Technology (EDBT2002), Prague, Czech
Republic, March 25-27, 2002, volume 2287 of Lecture Notes in Computer Science, pages
15-33. Springer.

[Papadopulos and Manolopoulos, 1997] Papadopulos, A. and Manolopoulos, Y. (1997). Per-
formances of nearest-neighbor queries in R-Trees. In Proceedings of the 6th International
Conference on Database Theory (ICDT1997), Delphi, Greece, January 8-10, 1997, volume
1186 of Lecture Notes in Computer Science, pages 394-408. Springer.

[Pamas and Ron, 2001] Pamas, M. and Ron, D. (2001). Testing metric properties. In Proceed-
ings of the 33 rd Annual ACM Symposium on Theory of Computing (STOC2001), Heraklion,
Crete, Greece, July 6-8, 2001, pages 276-285. ACM Press.

[Pramanik et al., 1999a] Pramanik, S., Alexander, S., and Li, J. (1999a). An efficient searching
algorithm for approximate nearest neighbor queries in high dimensions. In Proceedings of
the IEEE International Conference on Multimedia Computing and Systems (ICMCS 1999),
Florence, Italy, June 7-11, 1999, volume 1. IEEE Computer Society.

[Pramanik et al., 1999b] Pramanik, S., Li, J., Ruan, J., and Bhattacharjee, S. K. (1999b). Ef-
ficient search scheme for very large image databases. In Beretta, G. B. and Schettini, R.,

REFERENCES 207

editors, Proceedings of the International Society for Optical Engineering (SPIE) on Internet
Imaging, San Jose, California, USA, January 26, 2000, volume 3964, pages 79-90. The
International Society for Optical Engineering.

[Rammal et al., 1986] Rammal, R., Toulouse, G., and Virasoro, M. A. (1986). Ultrametricity
for physicists. Reviews of Modern Physics, 58(3):765-788. The American Physical Society.

[Rico-Juan and Mico, 2003] Rico-Juan, J. R. and Mico, M. L. (2003). Comparison of AESA
and LAESA search algorithms using string and tree-edit-distances. Pattern Recognition
Letters, 24(9-10): 1417-1426. Elsevier.

[Samet, 1984] Samet, H. (1984). The quadtree and related hierarchical data structures. ACM
Computing Surveys (CSUR 1984), 16(2): 187-260. ACM Press.

[Sankoff and Kruskal, 1983] Sankoff, D. and Kruskal, J. B. (1983). Time Warps, String Edits,
and Macromolecules. Addison-Wesley, Reading, Mass.

[Seidl and Kriegel, 1997] Seidl, T and Kriegel, H.-R (1997). Efficient user-adaptable similarity
search in large multimedia databases. In Jarke, M., Carey, M. J., Dittrich, K. R., Lochovsky,
F. H., Loucopoulos, P., and Jeusfeld, M. A., editors, Proceedings of the 23rd International
Conference on Very Large Data Bases (VLDB 1997), Athens, Greece, August 25-29, 1997,
pages 506-515. Morgan Kaufmann.

[Shapiro, 1977] Shapiro, M. (1977). The choice of reference points in best-match file searching.
Communications of the ACM (CACM1977), 20(5): 339-343. ACM Press.

[Shasha and Wang, 1990] Shasha, D. and Wang, J. T.-L. (1990). New techniques for best-match
retrieval. ACM Transactions on Information Systems (TOIS1990), 8(2): 140-158. ACM Press.

[Skopal, 2004] Skopal, T. (2004). Pivoting M-tree: A metric access method for efficient simi-
larity search. In Snasel, V., Pokomy, J., and Richta, K., editors. Proceedings of the Annual
International Workshop on DAtabases, TExts, Specifications and Objects (DATESO 2004),
Desna, Czech Republic, April 14-16, 2004, volume 98 of CEUR Workshop Proceedings.
Technical University of Aachen (RWTH).

[Skopal et al., 2003] Skopal, T., Pokomy, J., Krätky, M., and Snasel, V. (2003). Revisiting M-
Tree building principles. In Kalinichenko, L. A., Manthey, R., Thalheim, B., and Wloka, U.,
editors. Proceedings of the 7th East European Conference on Advances in Databases and
Information Systems (ADBIS2003), Dresden, Germany September 3-6, 2003, volume 2798
of Lecture Notes in Computer Science. Springer.

[Skopal et al., 2005] Skopal, T, Pokomy, J., and Snasel, V. (2005). Nearest neighbours search
using the PM-Tree. In Proceedings of the 10th International Conference on Database Systems
for Advanced Applications (DASFAA 2005), Beijing, China, April 17-20, 2005, volume 3453
of Lecture Notes in Computer Science, pages 803-815. Springer.

[Stanoi et al., 2000] Stanoi, I., Agrawal, D., and Abbadi, A. E. (2000). Reverse nearest neighbor
queries for dynamic databases. In Proceedings of the ACM SIGMOD Workshop on Research
Issues in Data Mining and Knowledge Discovery, Dallas, Texas, USA, May 14, 2000, pages
44-53. ACM Press.

[Stanoi et al., 2001] Stanoi, I., Riedewald, M., Agrawal, D., and Abbadi, A. E. (2001). Discov-
ery of influence sets in frequently updated databases. In Proceedings of the 27th International

208 SIMILARITY SEARCH

Conference on Very Large Data Bases (VLDB 2001), Roma, Italy, September 11-14, 2001,
pages 99-108. Morgan Kaufmann.

[Theodoridis and Sellis, 1996] Theodoridis, Y. and Sellis, T. K. (1996). A model for the pre-
diction of R-tree performance. In Proceedings of the 15th ACM Symposium on Principles of
Database Systems (PODS 1996), Montreal, Canada, June 3-5, 1996, pages 161-171. ACM
Press.

[Traina, Jr. et al., 1999] Traina, Jr., C , Traina, A. J. M., and Faloutsos, C. (1999). Distance
exponent: A new concept for selectivity estimation in metric trees. Technical Report CMU-
CS-99-110, Computer Science Department, School of Computer Science, Carnegie Mellon
University.

[Traina, Jr. et al., 2000a] Traina, Jr., C , Traina, A. J. M., and Faloutsos, C. (2000a). Distance
exponent: A new concept for selectivity estimation in metric trees. In Proceedings of the
16th International Conference on Data Engineering (ICDE 2000), San Diego, California,
USA, February 28 - March 3, 2000, page 195. IEEE Computer Society.

[Traina, Jr. et al., 2002] Traina, Jr., C , Traina, A. J. M., Faloutsos, C , and Seeger, B. (2002).
Fast indexing and visualization of metric data sets using Slim-Trees. IEEE Transactions on
Knowledge and Data Engineering (TKDE 2002), 14(2):244-260. IEEE Computer Society.

[Traina, Jr. et al., 2000b] Traina, Jr., C , Traina, A. J. M., Seeger, B., and Faloutsos, C. (2000b).
Slim-Trees: High performance metric trees minimizing overlap between nodes. In Zan-
iolo, C , Lockemann, R C, Scholl, M. H., and Grust, T, editors. Proceedings of the 7th
International Conference on Extending Database Technology (EDBT2000), Konstanz, Ger-
many, March 27-31, 2000, volume 1777 of Lecture Notes in Computer Science, pages 51-65.
Springer.

[Tuncel et al., 2002] Tuncel, E., Ferhatosmanoglu, H., and Rose, K. (2002). VQ-index: an index
structure for similarity searching in multimedia databases. In Proceedings of the 10th ACM
International Conference on Multimedia 2002, Juan les Pins, France, December 1-6, 2002,
pages 543-552. ACM Press.

[Uhlmann, 1991] Uhlmann, J. K. (1991). Satisfying general proximity/similarity queries with
metric trees. Information Processing Letters, 40(4): 175-179. Elsevier.

[Vidal, 1986] Vidal, E. (1986). An algorithm for finding nearest neighbors in (approximately)
constant average time. Pattern Recognition Letters, 4(3): 145-157. Elsevier.

[Vidal, 1994] Vidal, E. (1994). New formulation and improvements of the nearest-neighbour ap-
proximating and eliminating search algorithm (AESA). Pattern Recognition Letters, 15(1): 1-
7. Elsevier.

[Vilar, 1995] Vilar, J. M. (1995). Reducing the overhead of the AESA metric-space nearest
neighbour searching algorithm. Information Processing Letters, 56(5):265-271. Elsevier.

[Volmer, 2002] Volmer, S. (2002). Fast approximate nearest-neighbor queries in metric feature
spaces by buoy indexing. In Proceedings of the 5th International Conference on Visual
Information Systems (VISUAL 2002), Hsin Chu, Taiwan, March 11-13, 2002, volume 2314
of Lecture Notes in Computer Science, pages 36-49. Springer.

[Wall et al., 2003] Wall, M. E., Rechtsteiner, A., and Rocha, L. M. (2003). Singular value
decomposition and principal component analysis. In Berrar, D., Dubitzky, W., and Granzow,

REFERENCES 209

M., editors, A Practical Approach to Microarray Data Analysis, pages 91-109. Kluwer
Academic Publishers, Norwell, MA.

[Wang et al., 2000] Wang, X., Wang, J. T.-L., Lin, K.-L, Shasha, D., Shapiro, B. A., and Zhang,
K. (2000). An index structure for data mining and clustering. In Knowledge and Information
Systems, volume 2, pages 161-184. Springer.

[Weber and Böhm, 2000] Weber, R. and Böhm, K. (2000). Trading quahty for time with nearest
neighbor search. In Zaniolo, C , Lockemann, P. C , Scholl, M. H., and Grust, T., editors.
Proceedings of the 7th International Conference on Extending Database Technology (EDBT
2000), Konstanz, Germany, March 27-31, 2000, volume 1777 of Lecture Notes in Computer
Science. Springer.

[Weber et al., 1998] Weber, R., Schek, H.-J., and Blott, S. (1998). A quantitative analysis and
performance study for similarity-search methods in high-dimensional spaces. In Gupta, A.,
Shmueli, O., and Widom, J., editors. Proceedings of the 24th International Conference on
Very Large Data Bases (VLDB 1998), New York City, New York, USA, August 24-27, 1998,
pages 194-205. Morgan Kaufmann.

[White and Jain, 1996] White, D. A. and Jain, R. (1996). Similarity indexing with the SS-tree.
In Su, S. Y. W, editor. Proceedings of the 12th International Conference on Data Engineering
(ICDE1996), New Orleans, Louisiana, USA, February 26 - March 1, 1996, pages 516-523.
IEEE Computer Society.

[Yang and Lin, 2001] Yang, C. and Lin, K.-I. (2001). An index structure for efficient reverse
nearest neighbor queries. In Proceedings of the 17th International Conference on Data
Engineering (ICDE 2001), Heidelberg, Germany, April 2-6, 2001, pages 485^92. IEEE
Computer Society.

[Yianilos, 1993] Yianilos, P. N. (1993). Data structures and algorithms for nearest neighbor
search in general metric spaces. In Proceedings of the 4th Annual ACM Symposium on
Discrete Algorithms (SODA 1993), Austin, Texas, USA, January 25-27, 1993, pages 311-
321. ACM Press.

[Yianilos, 1999] Yianilos, P. N. (1999). Excluded middle vantage point forests for nearest neigh-
bor search. In Proceedings of the 6th DIMACS Implementation Challenge: Near Neighbor
Searches (ALENEX1999), Baltimore, Maryland, USA, January 15-16, 1999.

[Zezula et al., 1998a] Zezula, P, Savino, P, Amato, G., and Rabitti, F. (1998a). Approximate
similarity retrieval with M-Trees. The VLDB Journal, 7(4): 275-293. Springer.

[Zezula et al., 1998b] Zezula, P, Savino, P, Rabitti, F., Amato, G., and Ciaccia, P (1998b).
Processing M-trees with parallel resources. In Procedings of the 8th International Workshop
on Research Issues in Data Engineering (RIDE 1998), Orlando, Florida, USA, February
23-24, 1998, pages 147-154. IEEE Computer Society.

[Zhou et al., 2003] Zhou, X., Wang, G., Yu, J. X., and Yu, G. (2003). M"^-tree: A new dy-
namical multidimensional index for metric spaces. In Schewe, K.-D. and Zhou, X., editors.
Proceedings of the 14th Australasian Database Conference on Database Technologies (ADC
2003), Adelaide, South Australia, February 4-7, 2003, volume 17 of CRPIT, pages 161-168.
Australian Computer Society.

210 SIMILARITY SEARCH

[Zhou et al., 2005] Zhou, X., Wang, G., Zhou, X., and Yu, G. (2005). BM"^-Tree: A hyperplane-
based index method for high-dimensional metric spaces. In Proceedings of the 10th Interna-
tional Conference on Database Systems for Advanced Applications (DASFAA 2005), Beijing,
China, April 17-20, 2005, volume 3453 of Lecture Notes in Computer Science, pages 398-
409. Springer.

Author Index

Abbadi, A. E. 17, 42, 90
Aberer, K. 164
Abiteboul, S. 13
Agrawal, D. 17, 42, 90
Alexander, S. 92, 93
Alpkocak, A. 167
Alt, H. 15
Amato, G. 55, 57, 60, 98, 99, 145, 148, 150,

153,164, 166
Apostolico, A. 13
Arya, S. 48, 90, 146
Aurenhammer, F. 83

Baeza-Yates, R. A. 67-69, 71, 72, 80
Barbara, D. 3
Barber, R. 11
Batko, M. 167
Beckmann, N. 40
Behrends, B. 15
Berchtold, S. 6, 52
Bern, M. W. 91
Bespamyatnikh, S. 91
Bhattacharjee, S. K. 92-94
Blömer, J. 15
Blott, S. 90
Böhm, C. 6
Böhm, K. 90
Bozkaya, T. 63-65, 74, 81, 82
Brin, S. 65, 82, 84, 106
Buck, J. R. 40
Bugnion, E. 78
Burden, R. 151
Burkhard, W. A. 68
Bustos, B. 65

Callahan, R B. 91
Carrasco, R. C. 80
Carreira-Perpinan, M. A. 41
Castelman, K. R. 40
Cetintemel, U. 38

Chakrabarti, K. 38
Chang, E. 94
Chavez, E. 65, 67, 68, 70-72, 80
Chiueh, T. 74
Chomicki, J. 38
Ciaccia, R 19, 36, 39, 52, 54, 55, 58-60, 87, 88

99, 105, 107-111, 124, 136, 153, 154,
164, 166

Clarkson, K. L. 7
Cobena, G. 13
Comer, D. 77, 106
Critchlow, D. E. 49
Cunto, W. 69

Danisman, T. 167
Dehne, F. K. H. A. 77
DeWitt, D. J. 162
Diaconis, R 49
Dohnal, V. 34, 88, 89, 126, 130, 131, 137, 143
Duda, R. O. 96
DuMouchel, W. 3
Dunteman, G. H. 40
Dwork, C. 49

Egecioglu, Ö. 89
Eppstein, D. 91
Equitz,W. 11,37

Fagin, R. 18, 19
Faires, J. D. 151
Faloutsos, C. 3, 11, 40, 52, 60-62, 88, 90,

113-116, 118
Ferhatosmanoglu, H. 42, 89, 90, 95, 96
Fhei, S. 78
Flickner, M. 11,37
Frakes, W. 71
Franklin, M. J. 38
Fukunaga, K. 39, 40

Gaede, V. 6

212 SIMILARITY SEARCH

Galil, Z. 13
Garcia-Molina, H. 94
Garcia, Y.J. 116
Gennaro, C. 88, 89, 126, 130, 131, 143, 167
Giles, C. L. 38
Gravano, L. 131
Gray, J. 162
Gray, R. M. 96
Gresho, A. 96
Guha, S. 13
Gunopulos, D. 17
Günther, O. 6
Guttman, A. 106

Haas, P. J. 3
Hafner, J. 11
Hafner, J. L. 11,37
Hart, P. E. 96
Hauswirth, M. 164
Hellerstein, J. M. 3
Hjaltason, G. R. 25, 27, 39, 40, 67, 79, 85, 87,

173
Hoel, P G. 51
Huttenlocher, D. P 14

loannidis, Y. E. 3
Ipeirotis, P. G. 131

Jagadish, H.V.3, 13,131
Jain, R. 40, 92
Johnson, T. 3, 177

Kailath, T. 40
Kalantari, I. 76
Kamel, I. 52, 60
Kankanhalli, M. S. 49
Kaufman, L. 96
Keim, D. A. 6, 52
Keller, R. M. 68
Kelly, J. L. 6
Klanderman, G. A. 14
Kohonen, T. 14
Kollios, G. 17
Kom, F. 17
Kosaraju, S. R. 91
Koudas,N. 13,131
Krätky,M. 112, 116
Kriegel,H.-Pll,37,40,52
Krishna, P 177
Kruskal,J. B. 13,113
Kumar, R. 49

Lee, D. 13, 15
Leopold, C. 162
Leutenegger, S. T. 116
Levenshtein, V. I. 12
Li, C. 94
Li, J. 92-94

Lin, K.-I. 17, 40, 90
Litwin, W. 163
Lopez, M. A. 116

MacQueen, J. B. 96
Manber, U. 69
Manolopoulos, Y 52
Marian, A. 13
Marroquin, J. L. 67, 68, 70-72, 80
McDonald, G. 76
Mehrotra, S. 38
Micö, M. L. 79, 80
Montesi, D. 19
Moreno-Seco, F. 80
Mount, D. M. 48, 90, 146
Muthukrishnan, S. M. 17, 131

Nanni, A. 60
Naor, M. 49
Narasimhalu, A. D. 49
Navarro, G. 13, 65, 67, 68, 70-72, 85-87
Neimat, M.-A. 163
Netanyahu, N. S. 48, 90, 146
Ng, R. T. 3
Niblack,W. 11,37
Noltemeier, H. 76, 77

Ogras, Ü. Y 90
Oncina, J. 79, 80
Oppenheim, A. V. 40
Ortega-Binderberger, M. 38
Özsoyoglu, Z. M. 63-65, 74, 81, 82

Papadopulos, A. 52
Pamas, M. 9
Patella, M. 19, 36, 39, 52, 54, 55, 58-60, 87, 8

99, 105, 107-111, 124, 136, 153, 154
Penzo, W. 19
Petkovic, D. 11
Pokomy, J. 112,116, 121
Poosala, V. 3
Port,S.C.51
Pramanik, S. 92-94

Rabitti, F 55, 57, 60, 98, 99, 136, 145, 148,
150, 153, 154, 164, 166

Ranmial, R. 9
Rechtsteiner, A. 41
Reyes, N. 87
Reynolds, A. 151
Rico-Juan, J. R. 80
Riedewald, M. 17
Rocha, L. M. 41
Ron, D. 9
Roos, T. 78
Rose, K. 95, 96
Ross, K. A. 3

AUTHOR INDEX 213

Rousseeuw, P. J. 96
Ruan, J. 92-94
Rucklidge, W. J. 14

Samet, H. 25, 27, 39, 40, 67, 79, 85, 87, 91, 173
Sankoff, D. 13
Savino, P. 55, 57, 60, 88, 89, 98, 99, 126, 130,

131, 145,148, 150,153, 164, 166, 167
Sawhney, H. S. 11,37
Schäfer, R. W. 40
Schek, H.-J. 90
Schneider, D. A. 163
Schneider, R. 40
Seeger, B. 40, 61, 62, 88, 113-116, 118
Seidl,T. 11,37
Sellis, T. K. 52
Sevcik, K. C. 3
Shapiro, B. A. 40, 90
Shapiro, M. 63, 80
Shasha, D. 40, 78, 90
Silverman, R. 48, 90, 146
Sivakumar, D. 49
Skopal,T. 112, 116, 118, 121
Snä§el,V. 112, 116, 121
Srivastava, D. 13, 131
Stanoi, I. 17
Stone, C.J. 51

Teng, S.-H. 91
Theodoridis, Y. 52
Toulouse, G. 9
Traina, A. J. M. 60-62, 88, 113-116, 118
Traina, Jr., C. 60-62, 88,113-116, 118
Trombetta, A. 19
Tsotras, V. J. 17
Tuncel, E. 42, 90, 95, 96

Uhlmann, J. K. 20, 77, 78,169
Ulker, T. 167

Verbarg, K. 76
Vidal, E. 78, 79
Vilar, J. M. 80
Virasoro, M. A. 9
Volmer, S. 97

Wall, M. E. 41
Wang,G. 121,123, 124
Wang, J. T.-L. 40, 78, 90
Wang, X. 40, 90
Weber, R. 90
White, D. A. 40, 92
Widmayer, R 78
Widmer, F. 78
Wiederhold, G. 94
Wu, A. Y. 48, 90, 146
Wu, J.-K. 49
Wu, S. 69

Yang, C. 17
Yianilos, P N. 20, 21, 63, 72-75
Yu,G. 121, 123, 124
Yu,J.X. 121, 123
Yu,T. 13

Zezula, P 19, 52, 54, 55, 57-60, 87-89, 98, 99,
105, 108, 109,124, 126, 130, 131, 136,
143, 145, 148,150, 153, 154, 164, 166,
167

Zhang, K. 40, 90
Zhou,X. 121, 123, 124
Zirkelbach, C. 76

Index

Ao algorithm, 79, 125
Address Search Tree (AST), 168,169,170-172,

175
logarithmic, 177

Angle property technique, 92
Approximate similarity search, 41, 44, 89, 144,

145, 155, 159
Approximating and Eliminating Search Algo-

rithm (AESA), 78, 80, 125
linear(LAESA), 79, 80, 118
reduced overhead (ROAESA), 80
tree linear (TLAESA), 80

Balanced Box Decomposition tree (BBD), 91
Bisector Tree (BST), 76, 78
BM+-tree, 124
Bounding constraints, 23, 27

double-pivot, 33, 78, 86,172
object-pivot, 28, 32, 34, 74, 79, 80, 108,

111
pivot filtering, 34, 63, 70, 81, 121, 126,

134, 137, 139
pivot-pivot, 31
range-pivot, 30, 32,68,72,76, 84, 87,108

Bounding region, see Region
Bulk loading, 88,109
Buoy index, 97
Burkhard-Keller Tree (BKT), 68, 71

Chessboard distance, see Minkowski distance
City-block distance, see Minkowski distance
Clustering for Index (Clindex), 94
Contractive mapping, 35, 42, 65
Coordinate space, 6, 35, 39, 40, 52
Covering radius, 60, 76, 86, 106, 112, 113, 116,

119,124
Cross talk, 7, 11
Cut-off iteration, 158

Declustering, 165-167

Density
data, 52
distance, 52, 53, 57, 59, 63, 64, 137
function, 57, 52, 59, 159

Dimensionality curse, 7, 40
Dimensionality reduction, 40, 42, 89
Discrete least-squares approximation, 151
Distance function, see Metric

continuous, 70,71,72
discrete, 9,68,71,72
time complexity, 14

Distance index (D-index), 88,126,131,138,179
Distance space, see Metric space
Distribution

data, 52, 58, 63
distance, 48, 52, 54-56, 60, 137,148, 158
function, 57, 149, 159

Early termination, 42, 44, 157
Editdistance, 72, 15, 18,37, 137
Error on position, 50,157
Euclidean distance, see Minkowski distance

weighted, 11
Exact match, 6, 75, 114, 139, 143
Excluded Middle Vantage Point Forest (VPF),

75,88
Exclusion bucket, 725
Exclusion set, 21, 75, 727

overloading, 131
Extended D-index (eD-index), 131
Extensibility, 5, 7

False dismissal, 41, 47
False hit, 35, 41, 42, 47, 89
FastMap, 40, 90
Fat-factor, 6Ö, 88, 114,118

absolute, 61
relative, 62

Fixed Quantiles Fixed Queries Array, 72
Fixed Queries Array (FQA), 70

216 SIMILARITY SEARCH

Fixed Queries Tree (FQT), 69,71, 81
Fixed Slices Fixed Queries Array, 72
Fixed-Height Fixed Queries Tree (FHFQT), 69,

71
Furthest neighbor search, 26

Generalized Hyperplane Tree (GHT), 77, 80,83,
85, 169

distributed (GHT*), 167, 179
Geometric Near-neighbor Access Tree (GNAT),

52,85, 106
Good fraction approximation, 98,148, 157, 159

Hausdorff distance, 14,15
Hotspot, 163, 167, 168

Image adjustment, 168, 775
Improvement in efficiency, 46, 155, 156, 159
Incremental similarity search, 19, 25
Index structure, 67

centralized, 105, 144, 167
distributed, 161, 7 6J, 167
parallel, 161,162, 164

Induced footrule distance, 50
Insertion algorithm, 107, 112, 113, 119, 130,

132, 171
Inter query parallelism, 189
Intraquery parallelism, 189

Jaccard's coefficient, 13, 14, 66, 137

Karhunen-Loeve transform, 39, 40, 90
Key dimension, 122

Levenshtein distance, see Edit distance
Lipschitz embedding, 39
Logarithmic replication, 777, 180, 183
Lower-bounding function, 36, 36

M+-tree, 121
M^-tree, 124
Manhattan distance, see Minkowski distance
Metric, 8, 9

pseudo,8
quasi, 9
super, see Metric, ultra
ultra, 9

Metric space, 6, 8
distance function, see Metric
domain, 6, 8
embedding, 36, 39, 40
postulates, 8,26, 57,76, 127
transformation, 35,42

Metric tree (M-tree), 87,105,113,118,121,124,
138, 179

parallel, 164, 167

MetricMap, 40, 90
Minimum Spanning Tree (MST), 113
Minkowski distance, 7Ö, 14, 37, 39, 40, 89, 121,

122, 137
Monotonous Bisector Tree (MBT), 76, 78
Multi Vantage Point Tree (MVPT), 81
Multi-set metric, 37
Multi-way insertion, 112
Multi-way Vantage Point Tree (mv-VPT), 74

Natural join, 17
Nearest neighbor search, 22, 59

algorithm, 23,25,85,91, 173
approximate, 47,48,90,96,146,148,150,

153
incremental, see Incremental similarity

search

Optimistic Vantage Point Tree, 74
Outlier, 64, 66

Partitioning
ball, 20, 27, 63, 67, 72
excluded middle, 27, 75, 89, 126
extensions, 21, 83
generalized hyperplane, 21, 33,76

Peer-to-Peer (P2P) data network, 164, 167, 168
joining, 178
leaving, 178

Performance evaluation, 136, 154, 179
Performance prediction, 58
Pivot,20,63,72, 106, 169

filtering, see Bounding constraints, pivot
filtering

selection, 63, 108, 171
Pivoting M-tree (PM-tree), 118
Point query, see Exact match
Precision, 46, 50, 97
Principal Component Analysis, 39
Priority queue, 23-25, 91, 121, 123, 158, 165,

173
Probably Approximately Correct (PAC), 99,153,

157
Proximity-based approximation, 99, 752, 155,

159
Pruning condition, see Bounding constraints

approximate, 43, 45, 93, 148, 150, 153,
154

Quad-tree, 91
Quadratic form distance, 137
Quadratic form distance, 77, 15, 37

Range search, 22, 58
algorithm, 23, 27, 39, 68, 72, 77, 80, 84,

86, 108, 120, 124,130, 172
Recall, 47, 50, 97, 155
Reference object, see Pivot

INDEX 217

Region, 22, 43
ball, 23, 55, 58-60, 106
proximity, 24,45,55, 56,60, 61,153, 166
ring, 118

Relative error approximation, 98,145,154, 155,
157,159

Relative error on distances, 48, 145, 153
Relaxed branching, 43, 44, 146, 153, 158
p-split function, 89,126, 131

n-order, 127
binary, 127

Routing mechanism, 163, i(59
Routing object, see Pivot

Scalability, 136, 141, 143, 161, 163, 164, 166,
170,189

Scalable and Distributed Data Structure (SDDS),
163, 164, 167

Scaled distance function, 36
Scaleup, 162, 166
Scaling factor, 36, 37
Separable bucket, 126,128
Separable property, 127
Separable set, 88, 727, 131
Sequential scan, 22, 28, 71, 85, 95, 125, 138,

161, 183
Similarity, 6
Similarity algebra, 19
Similarity Hashing (SH), 88
Similarity join, 77,131

algorithm, 131, 735
self join, 77,18, 131

Similarity query, 6, 75
combined, 18
complex, 18, 25, 124
execution, 22, 58, 59, 165

nearest neighbors, 16,18
range, 75, 18
reverse nearest neighbors, 17

Sliding window, 133
Slim-down algorithm, 114

generalized, 116
Slim-tree, 88,113
Small chance improvement approximation, 98,

750, 157,159
Spaghettis, 80
SparseMap, 39
Spatial Approximation Tree (SAT), 85
Speedup, 143,162, 166, 167
Sperman footrule distance, 49
Splitting, 108,110,113,120,122,170,175,177

deferred, 113, 115
SS-tree, 92
Stop condition, 42, 44, 92, 97, 148, 150, 151,

154
Suffix tree, 71

Tanimoto similarity, 14
Tree edit distance, 13, 15
Triangle inequality, see Metric space, postulates
Twin node, 121

User-defined function, 36, 38

Vantage Point Tree (VPT), 72, 74, 78, 81, 84
Vector Approximation file (VA-file), 90
Vector Quantization index (VQ-index), 95
Viewpoint, 54

discrepancy, 54
homogeneity, 55, 58, 149

Voronoi Tree (VT), 77

Abbreviations

AESA Approximating and Eliminating Search Algorithm
Ak-LAESA Approximating k-LAESA

AST Address Search Tree
bps Ball-Partitioning Split

BBD Balanced Box Decomposition
BID Bucket Identifier

BKT Burkhard-Keller Tree
BPATH Bit Path

BST Bisector Tree
B-tree Balanced Tree

BT Big system elapsed Time
BTBP Big system elapsed Time on Big Problem

Clindex Clustering for Index
CPU Central Processing Unit

D-index Distance Index
DNA Deoxyribonucleic Acid

eD-index Extended Distance Index
ED Error on Distances
EP Error on Position

FHFQT Fixed-Height Fixed Queries Tree
FQA Fixed Queries Array
FQT Fixed Queries Tree
GHT Generalized Hyperplane Tree

GHT* Distributed Generalized Hyperplane Tree
GNAT Geometric Near-neighbor Access Tree
kNN /c-Nearest Neighbors

kRNN /c-Reverse Nearest Neighbors
lAM Image Adjustment Message

IE Improvement in Efficiency
IFD Induced Footrule Distance
I/O Input/Output

KUT Karhunen-Loeve Transform
LAESA Linear Approximating and Eliminating Search Algorithm

mM_RAD_2 Minimum Maximum Radius
MBT Monotonous Bisector Tree
MST Minimal Spanning Tree

M-tree Metric Tree
MVPT Multi Vantage Point Tree

mw-VPT Multi-Way Vantage Point Tree

220 SIMILARITY SEARCH

NL Nested Loop
NNID Network Node Identifier

OJ Overloading Join
P2P Peer-to-Peer
PAC Probably Approximately Correct

PM-tree Pivoting M-tree
PR Pending Request (Priority) queue

RAM Random Access Memory
RJ Range Join

ROAESA Reduced Overhead Approximating and Eliminating Search Algorithm
R-tree Rectangular Tree

SAT Spatial Approximation Tree
SDDS Scalable and Distributed Data Structure

SH Similarity Hashing
SPD Sperman Footrule Distance

ST Small system elapsed Time
STSP Small system elapsed Time on Small Problem
STR String (Sentence) dataset
SVD Singular Value Decomposition

TLAESA Tree LAESA
URL Uniform Resource Locator dataset
VEC Vector dataset
VPF Excluded Middle Vantage Point Forest
VPT Vantage Point Tree

VQ-index Vector Quantization Index
VT Voronoi Tree

