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Foreword 

The area of similarity searching is a very hot topic for both research and com-
mercial applications. Current data processing applications use data with con-
siderably less structure and much less precise queries than traditional database 
systems. Examples are multimedia data like images or videos that offer query-
by-example search, product catalogs that provide users with preference-based 
search, scientific data records from observations or experimental analyses such 
as biochemical and medical data, or XML documents that come from heteroge-
neous data sources on the Web or in intranets and thus does not exhibit a global 
schema. Such data can neither be ordered in a canonical manner nor meaning-
fully searched by precise database queries that would return exact matches. 

This novel situation is what has given rise to similarity searching, also re-
ferred to as content-based or similarity retrieval. The most general approach 
to similarity search, still allowing construction of index structures, is modeled 
in metric space. In this book. Prof. Zezula and his co-authors provide the first 
monograph on this topic, describing its theoretical background as well as the 
practical search tools of this innovative technology. 

In Part I, the authors describe ideas and principles, as well as generic par-
titioning, search and transformation strategies which have been developed for 
similarity search in metric spaces. Their use is illustrated in an extensive survey 
of available indexes. Part II concentrates on similarity search techniques for 
large collections of data. In particular, it starts with the pioneering work on the 
M-tree, developed by Prof. Zezula as one of the authors, and continues with 
the description of hash-based techniques for similarity searching, which formed 
the main topic of Dr. Dohnal's PhD dissertation. The approximate similarity 
search, representing another important chapter of this book, was mainly devel-
oped in the PhD dissertation of Dr. Amato. The final chapter on scalable and 
distributed index structures for similarity searching reports the latest efforts of 
the PhD candidate Dr. Batko. All these PhD dissertations have been supervised 
by Prof. Zezula. 



xiv SIMILARITY SEARCH 

This monograph is a very valuable resource for scientists who are working or 
want to work on the many aspects of similarity search. The authors are not only 
leading experts in this field, but also pedagogically first-rate scholars. Their 
explanations nicely combine mathematical rigor with intuitive examples and 
illustration. I believe this book will be a great asset for students and researchers 
alike. 

Prof. Gerhard Weikum 
Max-Planck Institute of Computer Science 
Saarbruecken, Germany 



Preface 

In the Information Society, information holds the master key to economic 
influence and success. But the usefulness of information depends critically upon 
its quality and the speed at which it can be transferred. In domains as diverse 
as multimedia, molecular biology, computer-aided design and marketing and 
purchasing assistance, the number of data resources is growing rapidly, both 
with regard to database size and the variety of forms in which data comes 
packaged. To cope with the resulting information overkill, it is vital to find 
tools to search these resources efficiently and effectively. Hence the intense 
interest in Computer Science in searching digital data repositories. 

But traditional retrieval techniques, typically based upon sorting routines and 
hash tables, are not appropriate for a growing number of newly-emerging data 
domains. More flexible methods must be found instead which take into account 
the needs of particular users and particular application domains. 

This book is about finding efficient ways to locate user-relevant information 
in collections of objects which have been quantified using a pairwise distance 
measure between object instances. It is written in direct response to recent 
advances in computing, communication and storage which have led to the cur-
rent flood of digital libraries, data warehouses and the limitless heterogeneity 
of Internet resources. The scale of the problem can be gauged by noting that 
almost everything we see, hear, read, write or measure will soon be avail-
able to computerized information systems. In such an environment, varied 
data modalities such as multimedia objects, scientific observations and mea-
surements, statistical analyses and many others, are massively extending more 
traditional attribute-like data types. 

Ordinary retrieval techniques are inadequate in many of these newer data 
domains because sorting is simply impossible. To illustrate, consider a col-
lection of bit patterns compared using the Hamming distance, i.e., the number 
of bits by which a given pair of patterns differs. There is no way to sort the 
patterns linearly so that, selecting any arbitrary member, the other objects can 
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be ordered in terms of steadily increasing Hamming distance. The same ap-
plies to the spectrum of colors. Obviously, we can sort colors according to their 
similarity with respect to a specific hue, for example pink. But we can't sort 
the set of all colors in such a way that, for each hue, its immediate neighbor is 
the hue most similar to it. 

This is what has given rise to a novel indexing paradigm based upon distance. 
From a formal standpoint, the search problem is modelled in metric space. 
The collection of objects to be searched forms a subset of the metric space 
domain, and the distance measure applied to pairs of objects is a metric distance 
function. This approach significantly extends the scope of traditional search 
approaches and supports execution of similarity queries. By considering exact, 
partial, and range queries as special cases, the distance search approach is highly 
extensible. In the last ten years, its attractiveness has prompted major research 
efforts, resulting in a number of specific theories, techniques, implementation 
paradigms and analytic tools aimed at making the distance-based approach 
viable. 

This book focuses on the state of the art in developing index structures for 
searching metric space. It consists of two parts. Part I presents the metric 
search approach in a nutshell. It defines the problem, describes major theoret-
ical principles, and provides an extensive survey of specific techniques for a 
large range of applications. This part is self-contained and does not require any 
specific prerequisites. Part II concentrates on approaches particularly designed 
for searching in large collections of data. After describing the most popular 
centralized disk-based metric indexes, approximation techniques are presented 
as a way to significantly speed up search time at the expense of some impre-
cision in query results. The final chapter of the book concentrates on scalable 
and distributed metric structures, which can deal with data collections that for 
practical purposes are arbitrarily large, provided sufficient computational power 
is available in the computer network. In order to properly understand Part II, 
we recommend at a minimum reading Chapter 1 of Part I. 

PAVEL ZEZULA, GIUSEPPE AMATO, 

VLASTISLAV DOHNAL, AND MICHAL BATKO 
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PARTI 

METRIC SEARCHING IN A NUTSHELL 



Overview 

As the growth of digital data accelerates in variety and extent, huge data 
repositories are becoming available on computer networks. For users to be able 
to access selected data objects, the objects need to be structured and manipulated 
efficiently but also effectively. 

In contrast to traditional databases made up of simple attribute data, contem-
porary data is bulkier and more complex in nature. To deal with the increased 
bulk, data reduction techniques are employed as in [Barbara et al., 1997]. 
These approaches typically result in high-dimensional vectors or other objects 
for which nothing beyond pairwise distances can be measured. Such data are 
sometimes designated distance-only data. A similar situation can occur with 
multimedia data. Here, the standard approach is to search not at the level of 
the actual multimedia objects, but rather using characteristic features extracted 
from these objects. In such environments, an exact match has little meaning, and 
proximity concepts {similarity, dissimilarity) are typically much more fruitful 
for searching. 

Proximity searching has become a fundamental computational task in a va-
riety of application areas, including multimedia information retrieval, data 
mining, pattern recognition, machine learning, computer vision, biomedical 
databases, data compression and statistical data analysis. It was originally stud-
ied mostly within computational geometry, but has recently attracted increasing 
attention in the database community, because of the growing need for dealing 
with a large, often distributed, volume of data. As a consequence, performance 
has become an important criterion for a successful design. It is well-known that 
performance is a noteworthy constraint on software systems, and a lack of it is 
the leading cause for failure. In applications such as data warehousing, with 
huge repositories of heterogeneous data, it's easy to see how important search 
speed is and how difficult it can be to achieve the necessary response time. Other 
good examples of data intensive applications are data mining and multimedia 
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content-based retrieval, where the amount of data processed is usually counted 
in terabytes or more. 

The primary objective of doing a similarity search in metric space is not 
terribly different from that in other kinds of searching. In each case the task is 
to retrieve subsets from available data collections. But there are many aspects 
of similarity searching in metric spaces which make it distinct. In order to 
systematically explain the principles which have led to the development of 
numerous specific proposals, we first explain in Chapter 1 how distances can 
be used to formalize the problem of proximity and how metric space postulates 
can be applied to data partitioning and pruning for different search methods. 
Chapter 2 is devoted to a structured survey of existing indexing techniques 
designed especially for metric data storage and retrieval. 



Chapter 1 

FOUNDATIONS OF METRIC SPACE SEARCHING 

The search problem is constrained in general by the type of data stored in 
the underlying database, the method of comparing individual data instances, 
and the specification of the query by which users express their information 
needs. Treating data collections as metric objects brings a great advantage 
in generality, because many data classes and information-seeking strategies 
conform to the metric view. Accordingly, a single metric indexing technique 
can be applied to many specific search problems quite different in nature. In this 
way, the important extensibility property of indexing structures is automatically 
satisfied. An indexing scheme that allows various forms of queries, or which 
can be modified to provide additional functionality, is of more value than an 
indexing scheme otherwise equivalent in power or even better in certain respects, 
but which cannot be extended. 

Because of the solid mathematical foundations underlying the notion of met-
ric space, straightforward but precise partitioning and pruning rules can be 
constructed. This is very important for developing index structures, especially 
in cases where query execution costs are not only I/O-bound but also CPU-
bound. In this chapter, we put clear constraints on the scope and capability of 
metric searching and define principles which are used to construct correspond-
ing search indexes. 

In Section 1, we introduce the problem of metric searching and justify its 
importance with respect to other approaches. After defining a metric space in 
Section 2, we show examples of several distance measures which are used for 
searching in diverse data collections in Section 3. Another issue closely related 
to distance measures is the problem of posing queries presented in Section 4. 
A specification of basic partitioning principles in Section 5 helps to understand 
principles of query execution in Section 6. The remaining sections in Chap-
ter 1 are devoted to performance related issues. Specifically, techniques aimed 
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at reducing the number of distance computations are discussed in Section 7, 
useful metric space transformations are presented in Section 8, and concepts of 
approximate similarity search are explained in Section 9. Finally, Section 10 
provides a collection of analytic tools and approaches especially developed for 
metric index structures. 

!• The Distance Searching Problem 
Searching has always been one of the most prominent data processing op-

erations. However, exact-match retrieval, typical for traditional databases, is 
neither feasible nor meaningful for data types in the present digital age. The 
reason is that the constantly expanding data of modem digital collections lacks 
structure and precision. Because of this, what constitutes a match to a request 
is often different from that implied in more traditional, well-established areas. 

A very useful, if not necessary, search paradigm is to quantify the proxim-
ity, similarity, or dissimilarity of a query object versus the objects stored in a 
database to be searched. Roughly speaking, objects that are near a given query 
object form the query response set. A useful abstraction for nearness is pro-
vided by the mathematical notion of metric space [Kelly, 1955]. We consider 
the problem of organizing and searching large datasets from the perspective of 
generic or arbitrary metric spaces, sometimes conveniently labelled distance 
spaces. In general, the search problem can be described as follows: 

PROBLEM 1.1 Let V he a domain, d a distance measure on T>, and (P, d) a 
metric space. Given a set X C Vofn elements, preprocess or structure the 
data so that proximity queries are answered efficiently. 

From a practical point of view, X can be seen as a file (a dataset or a collection) 
of objects that takes values from the domain V, with d as the proximity measure, 
i.e., the distance function defined for an arbitrary pair of objects from V. Though 
several types of similarity queries exist and others are expected to appear in 
the future, the basic types are known as the similarity range and the nearest 
neighbor(s) queries. 

In a distance space, the only possible operation on data objects is the com-
putation of a distance function on pairs of objects which satisfies the triangle 
inequality. In contrast, objects in a coordinate space - coordinate space being a 
special case of metric space - can be seen as vectors. Such spaces satisfy some 
additional properties that can be exploited in storage (index) structure designs. 
Naturally, the distance between vectors can be computed, but each vector can 
also be uniquely located in coordinate space. Further, vector representation 
allows us to perform operations like vector addition and subtraction. Thus, new 
vectors can be constructed from prior vectors. For more information, see e.g., 
[Gaede and Günther, 1998, Böhm et al., 2001] for surveys of techniques that 
exploit the properties of coordinate space. 



Foundations of metric space searching 1 

Since many data domains in use are represented by vectors, there might seem 
to be little point in hunting efficient index structures in pure metric spaces, 
where the number of possible geometric properties would seem limited. The 
following discussion should clarify the issue and provide sufficient evidence of 
the importance of the distance searching problem. 

Applications managing non-vector data like character strings (natural lan-
guage words, DNA sequences, etc.) do exist, and their number is growing. 
But even when the objects processed are vectors, the properties of the under-
lying coordinate space cannot always be easily exploited. If the individual 
vectors are correlated, i.e., there is cross-talk between them, the neighborhood 
of the vectors seen through the lens of the distance measure between them will 
not map directly to their coordinate space, and vice versa. Distance functions 
which allow user-defined weights to be specified better reflect the user's per-
ception of the problem and are therefore preferable. This occurs, for instance, 
when searching images using color similarity, where cross-talk between color 
components is a factor that must be taken into account. 

Existing solutions for searching in coordinate space suffer from the so-called 
dimensionality curse - such structures either become slower than naive algo-
rithms with linear search times or they use too much space. Though the structure 
of indexed data may be intrinsically much simpler (the data may, e.g., lie in a 
lower-dimensional hyperplane), this is typically difficult to ascertain. More-
over, some spaces have coordinates restricted to small sets of possible values 
(perhaps even binary), so that the use of such coordinates is not necessarily 
helpful. 

Depending on the data objects, the distance measure and the dimension-
ality of a given space, we agree that the use of coordinates can be advanta-
geous in special cases, resulting in non-extensible solutions. But we also agree 
with [Clarkson, 1997], that 

to strip the problem down to its essentials by only considering distances, 
it is reasonable to find the minimal properties needed for fast algorithms. 

In summary, the primary reasons for looking at the distance data search problem 
seriously are the following: 

1 There are numerous applications where the proximity criteria offer no spe-
cial properties but distance, so a metric search becomes the sole option. 

2 Many specialized solutions for proximity search perform no better than 
indexing techniques based on distances. Metric search thus forms a viable 
alternative. 

3 If a good solution utilizing generic metric space can be found, it will provide 
high extensibility. It has the potential to work for a large number of existing 
proximity measures, as well as many others to be defined in the future. 
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2. The Metric Space 
A similarity search can be seen as a process of obtaining data objects in 

order of their distance or dissimilarity from a given query object. It is a kind of 
sorting, ordering, or ranking of objects with respect to the query object, where 
the ranking criterion is the distance measure. Though this principle works for 
any distance measure, we restrict the possible set of measures by the metric 
postulates. 

Suppose a metric space M — (T>^ d) defined for a domain of objects (or the 
objects' keys or indexed features) V and a total (distance) function d. In this 
metric space, the properties of the function d : P x P i-̂  M, sometimes called 
the metric space postulates, are typically characterized as: 

Mx^ y G P , d{x^ y) >0 non-negativity, 

Vx, y ET)^ d(x^ y) = d{y^ x) symmetry, 

Vx,y eV^x = y ^ d{x^y) = 0 identity, 

Vx, y^z eV^ d(x^ z) < d{x^ y) + d{y^ z) triangle inequality. 

For brevity, some authors call the metric fiinction simply the metric. There 
are also several variations of metric spaces. In order to specify them more 
easily, we first transform the metric space postulates above into an equivalent 
form in which the identity postulate is decomposed into (p3) and (p4): 

(pi) Vx, y G P , d{x, y) ^ 0 non-negativity, 

(p2) Vx, y eV^ d{x^ y) = d{y, x) symmetry, 

(p3) Vx G V, d{x, x) = 0 reflexivity, 

(p4) Vx,y eV^x y^ y ^ d{x^y) > 0 positiveness, 

(p5) Vx, y^z eV^ d{xj z) < d(x, y) + d{y^ z) triangle inequality. 

If the distance function does not satisfy the positiveness property (p4), it is 
called a pseudo-metric. In this book, we do not consider pseudo-metric func-
tions separately, because such functions can be transformed to the standard 
metric by regarding any pair of objects with zero distance as a single object. 
Such a transformation is correct: if the triangle inequality (p5) holds, we can 
prove that d{x^ y) = 0 ^^z eV^ d{x^ z) = d{y^ z). Specifically, by combin-
ing the triangle inequalities 

d{x,z) < d{x,y) + d{y,z) 
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and 
diy.z) < d{x,y) + d{x,z), 

we get d{x^ z) — d{y^ z), if d{x^ y) = 0. 
If, on the other hand, the symmetry property (p2) does not hold, we talk about 

a quasi-metric. For example, let the objects be different locations within a city, 
and the distance function the physical distance a car must travel between them. 
The existence of one-way streets implies the function must be asymmetrical. 
There are techniques to transform asymmetric distances into symmetric form, 
for example: 

To round out our list of possible metric distance function variants, we con-
clude this section with a version which satisfies a stronger constraint on the 
triangle inequality. It is called the super-metric or the ultra-metric. Such a 
function satisfies the following tightened triangle inequality: 

Va::, y^z eV^ d{x^ z) < max{(i(x, ?/), d{y^ z)}. 

The geometric characterization of the super-metric requires every triangle to 
have at least two sides of equal length, i.e., to be isosceles, which implies that 
the third side must be shorter than the others. Ultra-metrics are widely used 
in the field of biology, particularly in evolutionary biology. By comparing the 
DNA sequences of pairs of species, evolutionary biologists obtain an estimate 
of the time which has elapsed since the species separated. From these distances, 
an evolutionary tree (sometimes called phylogenetic tree) can be reconstructed, 
where the weights of the tree edges are determined by the time elapsed between 
two speciation events [Pamas and Ron, 2001, Rammal et al., 1986]. Having a 
set of extant species, the evolutionary tree forms an ultra-metric tree with all 
the species stored in leaves and an identical distance from root to leaves. The 
ultra-metric tree is a model of the underlying ultra-metric distance function. 

3. Distance Measures 
The distance functions of metric spaces represent a way of quantifying the 

closeness of objects in a given domain. In the following, we present examples of 
distance functions used in practice on various types of data. Distance functions 
are often tailored to specific applications or a class of possible applications. 
In practice, distance functions are specified by domain experts, however, no 
distance function restricts the range of queries that can be asked with this metric. 

Depending on the character of values returned, distance measures can be 
divided into two groups: 

• discrete - distance functions which return only a small (predefined) set of 
values, and 
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Figure LI. The sets of points at a constant distance from the central point for different Lp 
distance functions. 

• continuous - distance functions in which the cardinality of the set of values 
returned is very large or infinite. 

An example of a continuous function is the Euclidean distance between vectors, 
while the edit distance on strings represents a discrete function. As we will see 
in Chapter 2, some metric structures are applicable only in the area of discrete 
metric functions. In the following, we mainly survey metric functions used for 
complex data types like multidimensional vectors, strings or sets. However, 
even domains as simple as the real numbers (V = R) can be seen in terms of 
metric data, by defining the distance function as d = \oi — Oj\, that is, as the 
absolute value of the difference of any pair of numbers (o ,̂ Oj) from V. 

3.1 Minkowski Distances 
The Minkowski distance functions form a whole family of metric functions, 

designated as the Lp metrics, because the individual cases depend on the nu-
meric parameter p. These functions are defined on n-dimensional vectors of 
real numbers as: 

Lp[{xi,,,,,xn),{yi,^..,yn)] = fi E Xn 

where the Li metric is known as the Manhattan distance (also the City-Block 
distance), the L2 distance denotes the well-known Euclidean distance, and the 
Loo = n^ax?=i l^i — yi\'^^ called the maximum distance, the infinite distance 
or the chessboard distance. Figure 1.1 illustrates some members of the Lp 
family, where the shapes denote points of a 2-dimensional vector space that 
are at the same distance from the central point. The Lp metrics find use in a 
number of cases where numerical vectors have independent coordinates, e.g., 
in measurements of scientific experiments, environmental observations, or the 
study of different aspects of the business process. 
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3.2 Quadratic Form Distance 
Several applications using vector data have individual components, i.e., fea-

ture dimensions, correlated, so a kind of cross-talk exists between individual 
dimensions. Consider, for example, color histograms of images, where each 
dimension represents a specific color. To compute a distance, the red compo-
nent, for example, must be compared not only with the dimension representing 
the red color, but also with the pink and orange, because these colors are sim-
ilar. The Euclidean distance L2 does not reflect any correlation of features of 
color histograms. A distance model that has been successfully applied to image 
databases in [Faloutsos et al., 1994], and that has the power to model depen-
dencies between different components of features, is provided by the quadratic 
form distance functions in [Hafner et al., 1995, Seidl and Kriegel, 1997]. In this 
approach, the distance measure of two n-dimensional vectors is based on an 
nxn positive semi-definite matrix M — [m^ ̂ J, where the weights ruij denote 
how strong the connection between two components i and j of vectors x and 
y is, respectively. These weights are usually normalized so that 0 < rriij < 1 
with the diagonal elements rrii^i == 1. The following expression represents a 
generalized quadratic distance measure dM, where the superscript T denotes 
vector transposition: 

dui^, y) = Y (^ -yY ' M '{x-y) , 

Observe that this definition of distance also subsumes the Euclidean distance 
when the matrix M is equal to the identity matrix. Also the weighted Eu-
clidean distance measure can be expressed using the matrix with non-zero ele-
ments on the diagonal representing weights of the individual dimensions, i.e., 
M — diag{wi^..., Wn). Applying such a matrix, the quadratic form distance 
formula turns out to be as follows, yielding the general formula for the weighted 
Euclidean distance: 

dM{x,y) = 

\ 

"^Wi^Xi-yiY 
i=l 

As an example, consider simplified color histograms with three different col-
ors (blue, red, orange) represented as 3-D vectors. Assuming three normalized 
histograms of a pure red image x = (0,1,0), a pure orange image y — (0,0,1) 
and a pure blue image z — (1,0,0), the Euclidean distance evaluates to the 
following distances: L2(x, y) = \/2 and L2(x, z) = \/2. This implies that the 
orange and the blue images are equidistant from the red. However, human color 
perception is quite different and perceives red and orange to be more alike than 
red and blue. This can be modeled with the matrix M shown below, yielding a 
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X, y distance equal to \/Ö^, while the distance x, £ evaluates to \/2. 

M = 
1.0 0.0 0.0 
0.0 1.0 0.9 
0.0 0.9 1.0 

The quadratic form distance measure may be computationally expensive, 
depending upon the dimensionality of the vectors. Color image histograms 
are typically high-dimensional vectors consisting of 64 or 256 distinct colors 
(vector dimensions). 

3.3 Edit Distance 
The closeness of sequences of symbols (strings) can be effectively mea-

sured by the edit distance, also called the Levenshtein distance, presented 
in [Levenshtein, 1965]. The distance between two strings and 
y — 2/1 • • 2/m is defined as the minimum number of atomic edit operations 
(insert, delete, and replace) needed to transform string x into string y. The 
atomic operations are defined formally as follows: 

• insert the character c into the string x at the position i\ 
ins{x^ 2, c) = xiX2 • • • XiCXi^i • • • x^; 

• delete the character at the position i from the string x: 
del{x, i) = xia;2 • • • x^-iXi+i -- - Xn', 

• replace the character at the position iinx with the new character c: 
replace{x^ z, c) = xiX2 • • • Xi-icxi^i • • • Xn-

The generalized edit distance function assigns weights (positive real numbers) 
to individual atomic operations. Hence, the distance between strings x and 
y is the minimum value of the sum of weighted atomic operations needed to 
transform x into y. If the weights of insert and delete operations differ, the 
edit distance is not symmetric (violating property (p2) defined in Section 2) 
and therefore not a metric function. To see why, consider the following exam-
ple, where the weights of atomic operations are set as wins = 2, Wdei = 1» 
"^replace ^ -•-• 

deditC'combine^^ ^'combination'') = 9 
- replacement e -^ a, insertion of t, i, o, n 

dediti^'combination''^ ^'combine") = 5 
- replacement a —̂  e, deletion of t, i, o, n 
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Within this book, we only assume metric functions, thus the weights of insert 
and delete operations must be the same. However, the weight of the replace 
operation can differ. Usually, the edit distance is defined with all weights equal 
to one. An excellent survey on string matching can be found in [Navarro, 2001]. 

Using weighting functions, we can define a most generic edit distance which 
assigns different costs even to operations on individual characters. For example, 
the replacement a ^ b can be assigned a different weight than a -> c. To retain 
the metric postulates, some additional limits must be placed on weight functions, 
e.g. symmetry of substitutions - the cost of a —> 6 must be the same as the cost 
of 6 —> a. 

3.4 Tree Edit Distance 
The tree edit distance is a well-known proximity measure for trees, exten-

sively studied in [Sankoff and Kruskal, 1983, Apostolico and Galil, 1997], The 
tree edit distance function defines a distance between two tree structures as the 
minimum cost needed to convert the source tree to the target tree using a prede-
fined set of tree edit operations, such as the insertion or deletion of a node. In 
fact, the problem of computing the distance between two trees is a generaliza-
tion of the edit distance to labeled trees. The individual cost of edit operations 
(atomic operations) may be constant for the whole tree, or may vary with the 
level in the tree at which the operation is carried out. The reason for having 
different weights for tree levels is that the insertion of a single node near the 
root may be more significant than adding a new leaf node. This will, of course, 
depend on the application domain. Several strategies for setting costs and com-
puting the tree edit distance are described in the doctoral thesis by Lee [Lee, 
2002]. Since XML documents are typically modeled as rooted labeled trees, 
the tree edit distance can also be used to measure the structural dissimilarity of 
XML documents [Guha et al., 2002, Cobena et al., 2002]. 

3.5 Jaccard's Coefficient 
Let us now focus on a different type of data and present a similarity measure 

that is applicable to sets. Assuming two sets A and ß , Jaccard's coefficient is 
defined as 

\A[^B\ 
d{A,B)^l-

\A[JB\ 

This distance function is simply based on the ratio between the cardinalities of 
intersection and union of the compared sets. As an example of an application 
that deals with sets, suppose we have access to a log file of web addresses 
(URLs) accessed by visitors to an Internet Cafe. Along with the addresses, 
visitor identifications are also stored in the log. The behavior of a user browsing 
the Internet can be expressed as the set of visited network sites and Jaccard's 
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coefficient can be applied to assess the similarity (or dissimilarity) of individual 
users' search interests. 

An application of this metric to vector data is called the Tanimoto similarity 
measure (see for example [Kohonen, 1984]), the distance version of which can 
be defined as: 

7 / -* -̂ \ -, ^' y 
dTs{Xyy) = 1- ,,-.112 , ||->||2 =r—; ^ 

||xP4- \\yr -x-y 
where x - yis the scalar product of x and y, and ||x|| is the Euclidean norm of 
X. 

3.6 Hausdorff Distance 
An even more complicated distance measure defined on sets is the Haus-

dorff distance [Huttenlocher et al., 1993]. In contrast to Jaccard's coefficient, 
where any two elements of sets must be either equal or completely distinct, 
the Hausdorff distance matches elements based upon a distance function de. 
Specifically, the Hausdorff distance is defined as follows. Assume: 

dp{x,B) = mfde{x,y), 

dp{A,y) = ixif de{x,y), 
xGA 

ds{A,B) = sup dp{x,B), 
xeA 

ds(B,A) =: sup dp{A,y). 
yeB 

Then the Hausdorff distance over sets A,B is: 

d{A, B) = max{d5(A, B),ds{B, A)}. 

The distance de (x, y) between two elements of sets A and B can be an arbitrary 
metric, e.g. the Euclidean distance, and is application-specific. Succinctly put, 
the Hausdorff distance measures the extent to which each point of the "model" 
set A lies near some point of the "image" set B and vice versa. In other words, 
two sets are within the Hausdorff distance r from each other if and only if any 
point of one set is within the distance r from some point of the other set. A 
typical application is the comparison of shapes in image processing, where each 
shape is defined by a set of points in a 2-dimensional space. 

3.7 Time Complexity 
In general, computing a distance is a nontrivial process which will certainly 

be much more computationally intensive than a keyword comparison as used 
in traditional search structures. For example, the Lp norms (metrics) are com-
puted in linear time dependent on the dimensionality n of the space. However, 
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the quadratic form distance is much more expensive because it involves multi-
pUcations by a matrix M. Thus, the time complexity in principle is 0{v? + n). 
Existing dynamic programming algorithms which evaluate the edit distance on 
two strings of length n and m have time complexity 0{nm). Tree edit distance 
is even more demanding and has a worst-case time complexity of 0{n^), where 
n refers to the number of tree nodes. For more details see for example [Lee, 
2002]. Similarity metrics between sets are also very time-intensive to evalu-
ate. The Hausdorff distance has a time complexity of 0{nm) for sets of size 
n and m. A more sophisticated algorithm by [Alt et al., 1991] can reduce its 
complexity to ö{{n + m)log{n + m)) . 

In summary, the high computational complexity of metric distance func-
tions gives rise to an important objective for metric index structures, namely 
minimizing the number of distance evaluations. Practical uses for the theo-
retical underpinnings discussed in Section 7 are demonstrated in the survey in 
Chapter 2. 

4. Similarity Queries 
A similarity query is defined explicitly or implicitly by a query object q and a 

constraint on the form and extent of proximity required, typically expressed as a 
distance. The response to a query returns all objects which satisfy the selection 
conditions, presumed to be those objects close to the given query object. In 
the following, we first define elementary types of similarity queries, and then 
discuss possibilities for combining them. 

4.1 Range Query 
Probably the most common type of similarity query is the similarity range 

query R{q, r). The query is specified by a query object q eV, with some query 
radius r as the distance constraint. The query retrieves all objects found within 
distance r of q, formally: 

R{q,r) = {oeX,d{o,q)<r}. 

If needed, individual objects in the response set can be ranked according to their 
distance with respect to q. Observe that the query object q need not exist in the 
collection X C !> to be searched, and the only restriction on q is that it belongs 
to the metric domain V. For convenience. Figure 1.2a shows an example of 
a range query. In a geographic application, a range query can formulate the 
requirement: Give me all museums within a distance of two kilometers from my 
hotel. 

When the search radius is zero, the range query i?(g, 0) is called 2ipoint query 
or exact match. In this case, we are looking for an identical copy (or copies) 
of the query object q. The most usual use of this type of query is in delete 
algorithms, when we want to locate an object to remove from the database. 



16 SIMILARITY SEARCH 

% (a) % (b) 

Figure 1.2. (a) Range query R{q, r) and (b) nearest neighbor query 3NN{q). 

4.2 Nearest Neighbor Query 
Whenever we want to search for similar objects using a range search, we 

must specify a maximal distance for objects to qualify. But it can be difficult to 
specify the radius without some knowledge of the data and the distance function. 
For example, the range r = 3 of the edit distance metric represents less than four 
edit operations between compared strings. This has a clear semantic meaning. 
However, a distance of two color-histogram vectors of images is a real number 
whose quantification cannot be so easily interpreted. If too small a query radius 
is specified, the empty set may be returned and a new search with a larger radius 
will be needed to get any result. On the other hand, if query radii are too large, 
the query may be computationally expensive and the response sets contain many 
nonsignificant objects. 

An alternative way to search for similar objects is to use nearest neighbor 
queries. The elementary version of this query finds the closest object to the given 
query object, that is the nearest neighbor of q. The concept can be generalized 
to the case where we look for the k nearest neighbors. Specifically, kNN{q) 
query retrieves the k nearest neighbors of the object q. If the collection to be 
searched consists of fewer than k objects, the query returns the whole database. 
Formally, the response set can be defined as follows: 

kNN{q) = {R C X,\R\ = k Ayx e R,y e X - R : d{q,x) < d{q,y)}. 

When several objects lie at the same distance from the k-th nearest neighbor, 
the ties are solved arbitrarily. Figure 1.2b illustrates the situation for a 3NN{q) 
query. Here the objects oi, 03 are both at distance 3.3 and the object oi is chosen 
as the third nearest neighbor (at random), instead of 03. If we continue with 
our geographic application, we can pose a query: Tell me which three museums 
are the closest to my hotel. 
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4.3 Reverse Nearest Neighbor Query 
In many situations, it is interesting to know how a specific object is per-

ceived or ranked in terms of distance by other objects in the dataset, i.e., which 
objects view the query object q as their nearest neighbor. This is known as 
a reverse nearest neighbor search. The generic version, conveniently desig-
nated kRNN{q), returns all objects with q among their k nearest neighbors. 
An example is illustrated in Figure 1.3a, where the dotted circles denote the 
distance to the second nearest neighbor of objects o .̂ The objects 04,05, OQ 
satisfying the 2RNN{q) query, that is those objects with q among their two 
nearest neighbors, are represented by black points. 

Recent work, such as [Kom and Muthukrishnan, 2000, Stanoi et al., 2001, 
Yang and Lin, 2001, Stanoi et al., 2000, Kollios et al., 1999], has highlighted 
the importance of reverse nearest neighbor queries in decision support systems, 
profile-based marketing, document repositories, and management of mobile 
devices. The response set of the general kRNN{q) query may be defined as 
follows: 

kRNN{q) = {RCX,WxeR:qekNN{x)A 
^xeX-R:q^kNN{x)}, 

Observe that even an object located far from the query object q can belong to the 
kRNN{q) response set. At the same time, an object near q need not necessarily 
be a member of the kRNN{q) result. This characteristic of the reverse nearest 
neighbor search is called the non-locality property. A specific query can ask 
for: all hotels with a specific museum as the nearest cultural heritage site. 

4.4 Similarity Join 
The development of Internet services often requires the integration of hetero-

geneous sources of data. Such sources are typically unstructured whereas the 
intended services often require structured data. An important challenge here 
is to provide consistent and error-free data, which entails some kind of data 
cleaning or integration typically implemented by a process called a similarity 
join. The similarity join between two datasets X C V and Y C V retrieves 
all pairs of objects {x e X^y e Y) whose distance does not exceed a given 
threshold // > 0. Specifically, the result of the similarity join J(X, y, p.) is 
defined as: 

J(X, y, p) = {{x, y)eXxY: d{x, y) < p}. 

If /̂  — 0, we get the traditional natural join. If the datasets X and Y coincide, 
i.e., X = y , we talk about the similarity self join and denote it as SJ{p) = 
J(X, X, p), where X is the searched dataset. Figure 1.3b presents an example 
of a similarity self join SJ{2.b). For illustration, consider a bibliographic 
database obtained from diverse resources. In order to clean the data, a similarity 
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Figure 1.3. (a) A reverse nearest neighbor query 2RNN{q) and (b) a similarity self join query 
SJ{2.5). Qualifying objects are filled. 

join request might identify all document titles with an edit distance smaller than 
two. Another application might maintain a collection of hotels and a collection 
of museums. The user might wish to find all pairs of hotels and museums which 
are a five minute walk apart. 

4.5 Combinations of Queries 
As an extension of the query types defined above, we can define additional 

types of queries as combinations of the previous ones. For example, we might 
combine a range query with a nearest neighbor query to get kNN{q^ r) with 
the response set: 

kNN{q,r) = {R C X,\R\ < k A\fx e R,y e X 

d{q, x) < d{q, y) A d{q, x) < r]. 

R: 

In fact, we have constrained the result from two sides. First, all objects in the 
result-set should lie at a distance not greater than r, and if there are more than 
k of them, just the first (i.e., the nearest) k are returned. By analogy, we can 
combine a similarity self join and a nearest neighbor search. In such queries, 
we limit the number of pairs returned for a specific object to the value k. 

4.6 Complex Similarity Queries 
Efficient processing of queries consisting of more than one similarity pred-

icate, i.e., complex similarity queries, differs substantially from traditional 
(Boolean) query processing. The problem was studied first by [Fagin, 1996, Fa-
gin, 1998]. The basic lesson learned is that the similarity score (or grade) a 
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retrieved object receives as a whole depends not only on the scores it gets for 
individual predicates, but also on how such scores are combined. In order to 
understand the problem, consider a query for circular shapes of red color. In 
order to find the best match, it is not enough to retrieve the best matches for the 
color features and the shapes. Naturally, the best match for the whole query 
need not be the best match for a single (color or shape) predicate. 

To this aim, [Fagin, 1996] has proposed the so-called AQ algorithm which 
solves the problem. This algorithm assumes that for each query predicate we 
have an index structure able to return objects of decreasing similarity. For 
every predicate z, the algorithm successively creates a set Xi containing objects 
which best match the query predicate. This building phase continues until all 
sets Xi contain at least k common objects, i.e., | P|̂  X^| = fc. This implies that 
the cardinalities of sets Xi are not known in advance, so a rather complicated 
incremental similarity search is needed (please refer to Section 6.2 for details). 
For all objects o G Ui ^i» ^^e algorithm evaluates all query predicates and 
establishes their final ranks. Then the first k objects are returned as a result. This 
algorithm is correct, but its performance is not very optimal and the expected 
query execution costs can be quite high. 

[Ciaccia et al., 1998b] have concentrated on complex similarity queries ex-
pressed through a generic language. On the other hand, they assume that query 
predicates are from a single feature domain, i.e., from the same metric space. 
Contrary to the language level that deals with similarity scores, the proposed 
evaluation process is based on distances between feature values, because metric 
indexes can use just distances to evaluate predicates. The proposed solution 
suggests that the index should process complex queries as a whole, evaluat-
ing multiple similarity predicates at a time. The flexibility of this approach is 
demonstrated by considering three different similarity languages: fuzzy stan-
dard, fuzzy algebraic and weighted sum. The possibility to implement such an 
approach is demonstrated through an extension of the M-tree [Ciaccia et al., 
1997b]. Experimental results show that performance of the extended M-tree 
is consistently better than the AQ algorithm. The main drawback of this ap-
proach is that even though it is able to employ more features during the search, 
these features are compared using a single distance function. An extension 
of the M-tree [Ciaccia and Patella, 2000a] which goes further is able to com-
pare different features with arbitrary distance functions. This index structure 
outperforms the AQ algorithm as well. Details of this structure are given in 
Chapter 3. 

A similarity algebra with weights has been introduced in [Ciaccia et al., 
2000]. This is a generalization of relational algebra to allow the formulation of 
complex similarity queries over multimedia databases. The main contribution 
of this work is that it combines within a single framework several relevant 
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(a) (b) (c) 

Figure 1.4. Examples of partitioning: (a) the ball partitioning, (b) the generalized hyperplane 
partitioning, and (c) the excluded middle partitioning. 

aspects of the similarity search, such as new operators (Top and Cut), weights 
to express user preferences, and scores to rank search results. 

5, Basic Partitioning Principles 
Partitioning, in general, is one of the most fundamental principles of any 

storage structure, aiming at dividing the search space into sub-groups, so that 
once a query is given, only some of these groups are searched. Given a set 
S QV of objects in metric space M = (P, d), [Uhlmann, 1991] defines ball 
partitioning and generalized hyperplane partitioning, while [Yianilos, 1999] 
suggests excluded middle partitioning. In the following, we briefly characterize 
these techniques. 

5.1 Ball Partitioning 
Ball partitioning breaks the set S into subsets Si and ^2 using a spherical 

cut with respect to p G P , where p is the pivot, chosen arbitrarily. Let dm be 
the median of {(i(o^,p), Vô  € S}. Then all Oj G S are distributed to Si or ^2 
according to the following rules: 

• ^i ^ {Oj I d{Oj,p) < dm}. 

• S2 ^ {oj I d{oj,p) > dm}' 

The redundant conditions < and > assure balance when the median value is not 
unique. This is accomplished by assigning each element at the median distance 
to one of the subsets in an arbitrary, but balanced, fashion. An example of a data 
space containing twenty-three objects is depicted in Figure 1.4a. The selected 
pivot p and the median distance dm establish the ball partitioning. 
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5.2 Generalized Hyperplane Partitioning 
Generalized hyperplane partitioning can be considered as an orthogonal prin-

ciple to ball partitioning. This partitioning also breaks the set S into subsets 
^i and 82- This time, though, two reference objects (pivots) pi,p2 ^ ^ are 
arbitrarily chosen. All other objects Oj G S are assigned to Si or ^2 depending 
upon their distances from the selected pivots as follows: 

• ^1 ^ {oj I d{pi,Oj) < d{p2,0j)}, 

m 82^ {oj I d{pi,Oj) > d{p2,0j)}. 

In contrast to ball partitioning, the generalized hyperplane does not guarantee a 
balanced split, and a suitable choice of reference points to achieve this objective 
is an interesting challenge. An example of a balanced split of a hypothetical 
dataset is given in Figure 1.4b. 

53 Excluded Middle Partitioning 
Excluded middle partitioning [Yianilos, 1999] divides S into three subsets 

^ i , S2 and S3. In principle, it is an extension of ball partitioning which has been 
motivated by the following fact: Though similarity queries search for objects 
lying within a small vicinity of the query object, whenever a query object 
appears near the partitioning threshold, the search process typically requires 
accessing both of the ball-partitioned subsets. The central idea of excluded 
middle partitioning is therefore to leave out points near the threshold dm in 
defining the two subsets Si and 52- The excluded points form the third subset 
Ss. An illustration of excluded middle partitioning can be seen in Figure 1.4c, 
where the dark objects fall into the exclusion zone. With such an arrangement, 
the search for similar objects always ignores at least one of the subsets ^i 
or ^2, provided that the search selectivity is smaller than the thickness of the 
exclusion zone. Naturally, the excluded points cannot be lost, so they can 
either be considered to form a third subset or, if the set is large, the basis of 
a new partitioning process. Given the thickness of the exclusion zone 2p, the 
partitioning can be defined as follows: 

• ^1 ^ {Oj I d{0j,p) <dm- p}, 

m S2<- {oj I d{0j,p) > dm + p}, 

m Ss <— Otherwise. 

Figure L4c also depicts a situation where the split is balanced, i.e., the cardi-
nalities of ^i and S2 are the same. However, this is not always guaranteed. 

5.4 Extensions 
Naturally, the basic partitioning principles can be generalized and extended 

in several ways. In principle. 
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• The binary partitioning can be extended into multiple partitioning by con-
sidering several thresholds, i.e., the set S can be divided into k > 2 groups. 

• The partitioning process can continue recursively so that a tree organization 
can be built in a top-down way. 

Specific combinations of these strategies have resulted in numerous practical 
storage structure designs, a survey of which is the subject of Chapter 2. 

6. Principles of Similarity Query Execution 
In the following, we discuss some general, rather abstract, principles of sim-

ilarity query execution. In addition to partitioning principles, strategies for 
query execution form another important part of any search structure because 
they can significantly influence the efficiency of answering queries. In Sec-
tion 6.1 we first concentrate on similarity range and nearest neighbor queries 
using two model structures: the sequential scan and a class of hierarchically 
partitioned structure. Section 6.2 is devoted to the more generic case of the 
so-called incremental similarity search. 

6.1 Basic Strategies 
The simplest, not always inefficient, strategy for executing similarity queries 

can be defined on a sequential organization of objects. Since the query object 
g is a search parameter which varies from search to search, the ordering of data 
objects with respect to q cannot be guaranteed, and all objects of a given file must 
therefore be processed. For a similarity range query, the response set is obtained 
by consecutively computing distances of data objects to q, and objects inside 
of the threshold r incrementally form the response set. The construction of 
the set of nearest neighbors is also an incremental process. Assuming k < n, 
the initial version of such a set is formed by the first k objects ordered with 
respect to their distance from q. For all the others, an object Oi is inserted in 
the response set if and only if d{q^ oi) < d{q^ Ok), where Ok is the fc-th nearest 
neighbor of g at a given stage of query execution. Whenever a new object is 
inserted in the response set, the previous fc-th nearest neighbor is eliminated. 

To achieve sub-linear search complexity, numerous similarity search struc-
tures have been proposed (see Chapter 2 for a survey of the most important). 
These separate data objects into subsets in such a way that only some of the 
subsets need to be accessed to solve a given query. As we will see later, organi-
zational strategies differ wildly, depending upon their underlying partitioning 
principles (see Section 5) and connecting structures. 

In order to demonstrate the generic principles of search strategies used in 
index structures, we assume a kind of hypothetical organization of metric data. 
Specifically, an entry N — {G^1Z{G)) of the structure consists of a set G 
of metric objects or other entries, and a specification of the bounding region 
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Range Search Algorithm 
Input: query region TZ{Q). 
Output: response set response. 

Enter information about an available entry into PR. 
response -e- 0 
while PR 7̂  0 do 

Extract entry Â  -: (G, 7^(G)) from PR. 
foreach object entry Oj e G do 

if d{q^Oj) < r then 
Oj -^ response 

enddo 
foreach non-object entry N' =: {C,n{C)) G G do 

if 7^(G0 and7^(Q) intersect then 
Insert the entry N' into PR. 

enddo 
enddo 

Figure 1.5. Search algorithm for range queries Q = R{q^ r). 

Tl{G). A bounding region of G represents a constraint on the metric that must 
be satisfied by all elements e e G. For example, a bounding region of a set 
G of objects specified by a preselected object p and a radius r implies that 
Vo e G, d{o^p) < r. For convenience, such bounding regions are often called 
ball regions. In practice, bounding regions can be formed by more complex 
conditions. As a rule, each element belongs to exactly one group (one set G) 
while the individual bounding regions may overlap. For simplicity, we assume 
that entries form a hierarchy and that the search always starts at the root entry. 
Since any similarity query Q returns a set of objects, we can always define a 
bounding region around the objects by analogy. We designate such region by 
n{Q). 

To outline the principles of search algorithms, we assume the properties 
(bounding constraints) of data regions are known, including pointers to their 
instance sets. Since an entry can contain other entries, search algorithms are 
recursive and an implementation without recursion requires a queue of Pending 
Requests, PR, as an auxiliary data structure. The similarity range query Q = 
R{q^r) can be solved using the algorithm presented in Figure 1.5. We also 
present the algorithm for executing the nearest neighbor query Q — kNN{q), 
see Figure 1.6. 
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Nearest Neighbor Search Algorithm 
Input: query object q, number of neighbors k. 
Output: response set response of cardinality k. 

Enter information about an available entry into PR. 
Fill response with k (random) objects from X. 
Adjust TZ{Q) according to the maximum distance from q 

in the response designated as r. 
Sort entries in PR with decreasing region proximity toTZ{Q). 
while PR 7̂  0 do 

Extract the first entry N = (G, 7^(G)) from PR. 
foreach object entry Oj e G do 

if d{q^Oj) < r then 
Update the response, r, and TZ{Q) by inserting Oj and 

removing the most distant object from q. 
Remove all entries A '̂ = {G\ 71(0')) from PR 

which no longer intersects TZ{Q). 
endif 

enddo 
foreach non-object entry N' = {G\ Tl{G')) G G do 

if7e(G0 and 7^(g) intersect then 
Insert the entry N' into PR. 

endif 
enddo 
Sort entries in PR with decreasing region proximity to TZ{Q). 

enddo 

Figure 1.6. Search algorithm for nearest neighbor queries. 

Partitioned organizations for similarity queries typically consist of many 
subsets, usually characterized by bounding spheres, i.e., ball regions. Aggregate 
information of this type is used for querying, specifically for pruning subsets 
that cannot contain qualifying objects. When a range query is considered, it is 
easy to see that ball regions having zero overlap with the query region can safely 
be ignored. On the other hand, all regions overlapping the query region should 
be accessed and the queue PR is used to keep track of such regions encountered 
during query execution. 

Even with nearest neighbors queries, the situation is in principle quite similar. 
By setting the distance to the k-th nearest neighbor as the search radius, we can 
transform the nearest neighbor query into a range query. In this case, the radius 
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will not be known in advance, but as [Hjaltason and Samet, 1999] detail, good 
nearest neighbor search strategies only access subsets whose regions overlap 
with the region of the query response. In order to achieve this, a queue of 
candidate regions PR is maintained, and the regions are accessed starting with 
the most promising, that is, with the region nearest to the query region. 

6.2 Incremental Similarity Search 
An incremental similarity search can provide objects in order of decreas-

ing similarity without explicitly specifying the number of nearest neighbors 
in advance. This is especially important in interactive database applications, 
as it makes it possible to display partial query results early. The incremen-
tal aspect also provides significant benefits in situations where the number of 
desired neighbors is unknown beforehand, for example when complex similar-
ity queries are processed. In the following, we outline an algorithm proposed 
by [Hjaltason and Samet, 2000]. 

The incremental nearest neighbor algorithm is applicable whenever the search 
space is structured in a hierarchical manner such as one we have defined above. 
However, the authors use a different approach to define the hierarchy. The 
chief difference lies in defining specialized distance functions instead of cover-
ing regions, which allows a more straightforward explanation of the incremental 
search algorithm. 

For a query object q the algorithm operates on a file X organized by a 
structure T as follows: The search hierarchy is composed of elements et of 
several different types t = 0 , . . . , tmax- Each element represents a subset of X, 
with an element eo of type 0 representing a single object in X. An element et of 
type t can give rise to one or more child elements of type 0 through t — 1, thus the 
search problem for et is decomposed into several smaller sub-problems. Each 
element of type t has an associated distance function dt{q^ et) which measures 
the distance from a query object q to elements of that type. For correctness, it is 
sufficient that dt{q^ et) < do{q, eo) for any object eo in the subset represented 
by et. In this way, the function dt bounds the distances from q to the objects 
in the subtree of et from below. The general incremental algorithm for kNN 
queries is specified in Figure 1.7. 

The algorithm starts off by initializing the queue of pending requests with the 
root of the search structure - since the order of entries in this queue is crucial, 
we refer to it as the priority queue. In the main loop, the element et closest to q 
is taken off the queue. If it is an object, we report it as the next nearest object. 
Otherwise, the child elements of et in the search hierarchy are inserted into the 
priority queue. 

This algorithm can easily be adapted to take advantage of imposed distance 
bounds, as in a range query, as well as the maximum result size, as in a fc-nearest 
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Incremental Nearest Neighbor Search Algorithm 
Input: query object q, search hierarchy T. 
Output: nearest neighbors in decreasing similarity. 

et <— root of the search hierarchy 
queue ^r- 0 
ENQUEUE(queue, e^ 0) 
while queue 7̂  0 do 

et ^ DEQUEUE(queue) 
if t == 0 then {et is an object) 

Report et as the next nearest object. 
else 

foreach child element e/ of et do 
ENQUEUE(queue, e/, di{q, e/)) 

enddo 
endif 

enddo 

Figure 1.7. Incremental search algorithm for nearest neighbor queries. 

neighbors query. In particular, given a maximum distance bound d"̂ , we only 
enqueue elements distant from q by less than or equal to d^. 

A useful extension of the algorithm is to find the farthest neighbor of a query 
object. This means defining another set of functions dtiq, et) that bound the 
distances from q to the objects under et from above. By replacing dt{q^ et) as a 
key for any element et on the priority queue with a negative function —dt (g, e^), 
we order the elements in the priority queue inversely. Thus, once an object has 
reached the front of the priority queue, we know there is no unreported object 
more distant from q. 

7. Policies for Avoiding Distance Computations 
Since the performance of similarity search in metric spaces is not only I/O, 

but also CPU-bound, as discussed in Section 3.7, it is very important to limit 
the number of distance computations as much as possible. To this aim, prun-
ing conditions must be applied not only to avoid accessing irrelevant sets of 
objects, but also to minimize the number of distances computed. The rationale 
behind such strategies is to use already-evaluated distances between some ob-
jects, while properly applying the metric space postulates - namely the triangle 
inequality, symmetry, and non-negativity - to determine bounds on distances 
between other objects. 
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(a) (b) 

Figure 1.8. (a) Recursive ball partitioning of a metric space, (b) corresponding binary tree. 

In this section, we describe several bounding strategies, originally proposed 
in [Hjaltason and Samet, 2000] and refined in [Hjaltason and Samet, 2003a]. 
These techniques represent general pruning rules that are employed, in a specific 
form, in practically all index structures for metric spaces. The following rules 
thus form the basic formal background. The individual techniques described 
differ as to the type of distance we have available, as well as what kind of 
distance computation we seek to avoid. 

?•! Explanatory Example 
Consider a hypothetical index structure based on a recursive application of 

the ball partitioning procedure defined in Section 5. Figure 1.8a illustrates a 
recursively partitioned metric space of objects o i , . . . , on. The first level of the 
corresponding binary tree in Figure 1.8b is created by applying ball partitioning 
using the pivot pi. The inner partition in Figure 1.8a (corresponding to the left 
subtree in Figure 1.8b) is divided using the same principle again, this time with 
the object p2 as a pivot. As you can see from the figures, the ball partitioning 
has so far only split the inner partition at the first level. The outer area remains 
untouched. This is then itself divided using the pivot pa. 

In general, a search algorithm for range queries Ä(g, r) works in top-down 
fashion. It starts at the root node where it decides which partitions must be 
visited and then descends the tree. Specifically, in each internal node, the 
algorithm computes distances d(pi^ q) between the pivot pi and the query object 
q. By respecting the median values drm and the query radius r, the algorithm 
determines all subtrees which might contain qualifying data. In a leaf node, the 
query object q is compared with the data objects Oj and any objects satisfying 
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Figure 1.9. Range search for query R(q,r): (a) from the geometric point of view, (b) algorithm 
accessing the left-most leaf node. 

the range search constraint d(q^ Oj) < r are reported. However, in both types 
of nodes, we can apply some rules (bounding constraints) that would optimize 
the search procedure by avoiding (possibly expensive) distance computations. 
Such techniques are clarified in the following. 

7.2 Object-Pivot Distance Constraint 
The basic type of bounding constraint is the object-pivot distance constraint, 

so called because it is usually applied to leaf nodes containing the data, i.e., 
the metric objects of the searched collection. Figure 1.9 demonstrates a sit-
uation in which such a bounding constraint can be beneficial with respect to 
the trivial sequential scan computing distances to all objects. Assume a range 
query R{q^ r) is issued (see Figure 1.9a) and the search algorithm has reached 
the left-most leaf node as illustrated in Figure 1.9b. At this stage, the se-
quential scan would examine all objects in the leaf, i.e., compute the distances 
d{q^ 04), d{q, oe), d(q, oio), and decide qualifying objects. However, provided 
the distances d{p2,04), d{p2j OQ), d{p2^ oio) are in memory (having been com-
puted during insertion) and the distance from q to p2 is d{q^ P2), some distance 
evaluations can be omitted. 

Figure 1.10a shows a detail view of the situation. The dashed lines represent 
distances we do not know and the solid lines, known distances. Suppose we 
need to estimate the distance between the query object q and the database object 
oio. Given only an object and the distance from it to another object, the object's 
precise position in space cannot be determined. Knowledge of the distance alone 
is not enough. With respect to p2, for example, the object oio could lie anywhere 



Foundations of metric space searching 29 

(a) 

O 

(b) (c) 

Figure 1.10. Illustration of the object-pivot constraint: (a) our model situation, (b) the lower 
bound, and (c) the upper bound. 

along the dotted circle representing all equidistant positions. This also implies 
the existence of two extreme possible positions for oio with respect to the 
query object q, a closest and furthest possible position. The former is depicted 
in Figure 1.10b while the latter is shown in Figure 1.10c. Systematically, the 
lower bound is computed as the absolute value of the difference between d(g, p2) 
and d{p2', oio), while the sum d{q^ p2) and d{p2', ^lo) forms the upper bound on 
the distance d{q^ oio). 

In our example, the lower bound on distance d(g, oio) is greater than the 
query radius r, thus we are sure the object oio cannot qualify the query and can 
skip it in the search process without actually computing the distance. If, on the 
contrary, we focus on the object oe, it can be seen from Figure 1.10c that the 
upper bound on d{q^ OQ) is less than r. As a result, OQ can be directly included 
in the query response set because the distance d{q., OQ) cannot exceed r. In both 
cases described, one distance computation is omitted, speeding up the search 
process. Concerning the object 04, we discover that the lower bound is less 
than the radius r and the upper bound is greater than r. That means 04 must 
be compared directly against q using the distance function, i.e., d{q^ 04) must 
be computed to decide whether 04 is relevant to the query or not. We formally 
summarize the ideas described in Lemma 1.1. 

LEMMA 1.1 Given a metric space A4 = (P, d) and three arbitrary objects 
q^p^o E V, it is always guaranteed: 

\d{q,p)-d{p,o)\ < d{q,o) < d{q,p) + d{p,o). 

Consequently, the distance d{q^ o) can be bounded from below and above, pro-
vided the distances d{q^ p) and d{p^ o) are known. • 
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Figure I.II. Illustration of the range-pivot constraint: (a) our model situation, (b) the lower 
bound, and (c) the upper bound. 

7.3 Range-Pivot Distance Constraint 
The object-pivot distance constraint described above assumes that all dis-

tances between the database objects Oi and the respective pivot p are known. 
However, some metric structures try to minimize the space needed to build the 
index, so storing such an amount of data is not acceptable. An alternative is 
to store only a range (a distance interval) in which the database objects occur 
with respect to p. Here, we can apply a weaker condition called the range-pivot 
distance constraint. 

Consider Figure 1.9 with the range query R{q^r) again and assume the search 
procedure is just about to enter the left-most leaf node of our sample tree. At 
this stage, a sophisticated search algorithm should decide if it is necessary to 
visit the leaf or not, i.e., whether any qualifying object can be found at this 
node. If we know the interval [r/, r/̂ ] in which distances from the pivot p2 to 
all objects 04,06,010 occur, it can be applied to solve the problem. A detail of 
such a situation is depicted in Figure 1.11a, where the dotted circles represent 
limits of the range and the known distance between the pivot and the query is 
emphasized by a solid line. The shortest distance from q to any object lying 
within the range is r/ — d{q^ P2) (see Figure 1.1 lb). Obviously, no object can be 
closer to q, because it would be nearer p2 than the threshold ri otherwise. By 
analogy, we can define the upper bound as r^ + d{q^p2), see Figure 1.11c. In 
this way, we have two expressions which limit the distance between an object 
and the query q. 

To reveal the usefulness of this, consider range queries again. If the lower 
bound is greater than the query radius r, we are sure that no qualifying object 
can be found and the node need not be accessed. On the other hand, if the upper 
bound is less than or equal to r, we can conclude that all objects qualify and 
directly include all descendant objects in the query response set - no further dis-
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Figure 1.12. Illustration of Lemma 1.2 with three different positions of the query object: (a) 
above, (b) below and (c) within the range [ri, rh]-

tance computations are needed at all. Note that in the model situation depicted 
in Figure 1.11, we can neither directly include nor prune the node, so the node 
must be accessed and its individual objects examined instance by instance. 

Up to now, we have only examined one possible position for the query and 
range, and stated two rules concerning the search radius r. Before we give 
a formal definition of the range-pivot constraint, we illustrate three different 
query positions in Figure 1.12, namely: above the range [ri^rh] in (a), below 
the range in (b), and within the interval in (c). We can bound d{q^ o), provided 
n ^ d{p^o) < Th and the distance d{q^p) is known. The dotted and dashed 
line segments denote the lower and upper bounds, respectively. At a general 
level, the problem can be formalized as follows: 

LEMMA 1.2 Given a metric space M = {T^^d) and objects o^p E V such 
that ri < d(o^ p) < r^, and given some q E V and an associated distance 
d{q^ p)y the distance 'd(q^ o) can be restricted by the range: 

max{%,p) -Th, n - d{q,p), 0} < d{q,o) < d{q,p) + rh^ 

D 

7.4 Pivot-Pivot Distance Constraint 
We have just described two principles which lead to a performance boost 

in search algorithms. Now, we turn our attention to a third approach which, 
while weaker than the foregoing two, still provides some benefit. This is the 
pivot-pivot distance constraint, and to explain it we once again make use of 
the hypothetical index structure depicted in Figure 1.8. Consider a situation in 
which the range search algorithm has approached the internal node with pivot 
pi (the root node of the structure) and the distance d{q^pi) has been evaluated. 
Here, the algorithm can apply Lemma 1.2 to decide which subtrees to visit. 
The careful reader may object that the range of distances with respect to the 
pivot pi must be known separately for both left and right branches. But this 
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(a) (b) 

Figure 1.13. (a) The lower r[ and upper r^ bounds on distance d{q,p2), (b) the range [ri.rh] 
on distances from p2 and database objects - the range from (a) is also included. 

is simple to achieve, because every object inserted into the structure must be 
compared with pi. Thus, we can assume that the correct intervals are known. 
The specifics of applying Lemma 1.2 are left to the reader as an easy exercise. 

Without loss of generality, we assume the algorithm has followed the left 
branch, reaching the node with pivot p2- Now, the algorithm could compute 
the distance d{q^p2) and apply Lemma 1.2 again. But since we know the 
distance d{q^pi), then if we also know the distance between pivots pi and p2, 
we can employ Lemma 1.1 to get an estimate of d{q^p2) without computing 
it, since d{q^p2) G [r[,r^]. In fact, we have now an interval on d{q^p2) and 
an interval on (i(p25 oi), where objects Oi are descendants of p2- Specifically, 
we have d{q^p2) G [r[, r^] and d{p2^ oi) G [r/, r/^]. Figure 1.13 illustrates both 
intervals. Figure 1.13a depicts the range on d{q^p2) with the known distance 
d{q^ Pi) emphasized. In Figure 1.13b, the second interval on distances d{p2, oi) 
is given in addition to the first interval, indicated by two dotted circles around 
the pivot p2- The purpose of these ranges is to give bounds on distances between 
q and database objects o ,̂ leading to a faster qualification process that does not 
require evaluating distances between q and oi, nor even computing d{q^p2). 
The figure shows both ranges intersect, which implies that the lower bound on 
d{q^ Oi) is zero. On the other hand, the sum r^ + rĵ  obviously forms the upper 
bound on the distances d{q^ oi). 

The example in Figure 1.13 only depicts the case when the ranges intersect. 
In Figure 1.14, we show what happens when the intervals do not coincide. In 
this case, the lower limit is equal to r[ — r^, which can be seen easily from 
Figure 1.14a. Figure 1.14b shows another view of the upper bound. The third 
possible position for the interval is opposite that depicted in Figure 1.14. This 
time, the intervals have been reversed, giving a lower limit of vi — r'^^. The 
general formalization of this principle is as follows: 
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Figure 1.14. Illustration of Lemma 1.3: (a) the ranges [ri,rh] and [r[, r ^ do not intersect, so 
the lower bound is r[ — rh\ (b) the upper limit rh + r'^-

LEMMA 1.3 Given a metric space M — (P, d) and objects o^p^q e V such 
that ri < d{p^o) < r^ and r'l < d{q^p) < r^, the distance d{q^o) can be 
bounded by the range: 

max{r[ - r/,, n - r'j,, 0} < d{q, o)<rk + r^. 

D 

7.5 Double-Pivot Distance Constraint 
The three previous approaches to speeding up the retrieval process in metric 

structures all use a single pivot, in keeping with the ball partitioning paradigm. 
Next we explore an alternate strategy based upon generalized hyperplane parti-
tioning. As defined in Section 5, this technique employs two pivots to partition 
the metric space. 

Figure 1.15a shows an example of generalized hyperplane partitioning in 
which pivots pi,p2 are used to divide the space into two subspaces - objects 
nearer pi belonging to the left subspace and objects nearer to p2 to the right. 
The vertical dashed line represents points equidistant from both pivots. With 
this partitioning we cannot establish an upper bound on the distance from query 
object q to database objects o ,̂ because the database objects may be arbitrarily 
far away from the pivots. Thus only lower limits can be defined. 

First, let us examine the case in which objects o and q are in the same sub-
space, not considered in Figure 1.15. Obviously the lower bound will equal 
zero, since it is possible some objects may be identical. Next, we consider 
the situation in Figure 1.15a, where the lower bound (depicted by a dotted 
line) is equal to {d{q^pi) — d{q^p2))/2. In Figure 1.15b, the hyperbolic curve 
represents all possible positions of the query object q with a constant value of 
(d(g, pi) — d{q^ p2))/2. If we move the query object q up vertically while main-
taining the distance to the dashed line, the expression {d{q^pi) — d{q^p2))/2 
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Figure 1.15. Illustration of Lemma 1.4: (a) the lower bound on d{q,o), (b) the equidistant 
positions of q with respect to the lower bound, and (c) shrinking the lower bound. 

decreases. For illustration, see Figure 1.15c, where q' represents the new posi-
tion of the query object. Consequently, the expression {d{q^pi) — d{q^p2))/2 
is indeed the lower bound on d{q^ o). The formal definition of this double-pivot 
distance constraint is given in Lemma 1.4. 

LEMMA 1.4 Assume a metric space M — iV^d) and objects o,pi,p2 € ^ 
such that d{o^pi) < (i(o,p2)- Given a query object q E V and the distances 
d{q^Pi) cind d{q^p2), the distance d{q^ o) is lower-bounded as follows: 

' d{q,pi) - d{q,p2) 
max , Q)<d{q,o). 

D 

We should point out this constraint does not employ any already-evaluated 
distance from a pivot to a database object. If we knew such distances to both 
pivots we would simply apply Lemma 1.1 twice, for each pivot separately. The 
concept of using known distances to several pivots is detailed in the following. 

7.6 Pivot Filtering 
Given a range query R{q^r), we can eliminate database objects by apply-

ing Lemma 1.1, provided we know the distance between p and all database 
objects. This situation is demonstrated in Figure 1.16a, where the white area 
contains objects that cannot be eliminated under such a distance criterion. After 
elimination, the search algorithm would proceed by inspecting all remaining 
objects and comparing them against the query object using the original dis-
tance function, i.e., for all non-discarded objects ô , verify the query condition 
d{q, Oi) < r. 

To achieve a greater degree of pruning, several pivots can be combined into 
a single pivot filtering technique [Dohnal, 2004]. The underlying idea is shown 
in Figure 1.16b, where the reader can observe the improved filtering effect for 
two pivots. We formalize this concept in the following lemma. 
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Figure 1.16. Illustration of filtering technique: (a) using a single pivot, (b) using a combination 
of pivots. 

LEMMA 1.5 Assume a metric space M. — (X>, d) and a set of pivots P = 
{Pij''' iPn}- We define a mapping function"^: (P, d) -^ {W^^ Loo) asfollows: 

^(o) = {d{o,pi), d{o,p2),..., d{o,Pn)). 

Then, we can bound the distance d{q^ a) from below: 

Loo{^{q),^{o))<d{q,o). 

D 

The mapping function ^(•) returns a vector of distances from an object o 
to all pivots in P. For a database object, the vector actually contains the pre-
computed distances to pivots. On the other hand, the application of ^(•) on 
a query object q requires computation of distances from the query object to 
all pivots in P. Once we have the vectors ^(g) and ^(o), the lower bound 
criterion can be applied to eliminate the object a if \d{q^pi) — d{o^pi)\ > r for 
any pi G P. The white area in Figure 1.16b represents the objects that cannot 
be eliminated from the search using two pivots. These objects will still have to 
be tested directly against the query object q with the original metric function d. 

The mapping ^(•) is contractive, that is the distance LOO(^(ÖI), ^(02)) 
is never greater than the distance (i(oi, 02) in the original metric space. The 
outcome of a range query performed in the projected space (R'^,Loo) may 
contain some spurious objects that do not qualify for the original query. To get 
the final result, the outcome has to be tested by the original distance function d. 
More details about the metric space transformations can be found in the next 
section. 

8. Metric Space Transformations 
It is intuitively clear that transforming one metric space into another actually 

means mapping all objects to a new domain so a different distance function can 
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be used. In general, we change both the objects and the metric function, but, as 
we shall see, several applications of this concept may demand only the metric 
function or the domain be changed. The new domain allows a similarity query 
in the transformed space to be substituted for a query in the original metric 
space. The motivation may be to enable a less expensive computation, and 
in this case we talk about a metric space embedding, explained in Section 8.3. 
Otherwise, the transformation may be done to take user-defined searchfiinctions 
into account - see Section 8.2. 

Obviously there must be additional restrictions in order to maintain a cor-
relation between query results in the original and transformed metric space. 
These restrictions are formally defined in Section 8.1 using a concept labeled 
lower-bounded metric fiinctions. 

8.1 Metric Hierarchies 
Before detailing specific techniques, we define the transformation of a metric 

space Ml = {Vi^di) into a metric space M2 = (^2)^2) as a function / : 
P i -> ©2, such that 

Voi, 02 G r^i : rfi(oi, 02) ^ d2{f{oi), /(02)). 

Note that the distance in the transformed metric space may not exactly equal 
the original distance. For purposes of similarity search, it is necessary to define 
a relation between distances in the original and the transformed metric spaces. 

We say that di is a lower-bounding distance fiinction of d2 if di is an under-
estimate of d2, that is 

Voi, 02 G Ü1 : di{oi, 02) < d2(/(oi), /(02)). 

Now assume instead that di is not a lower-bounding distance function of ^2- We 
can define a new scaled distance fiinction (iis (oi, 02) = Sd^ ̂ 0,2 * <̂ i (^i 5 ^2) such 
that dis is a lower-bounding distance function of 2̂» where 0 < Sfii-^d2 < 1 
is a real number called the scaling factor. Clearly, it is not always possible to 
define dis because a convenient scaling factor cannot be obtained for every pair 
of distance functions ^1,^2. However, if Sd-^^d2 exists, an infinite number of 
other values of the scaling factor can be found. Therefore, it is advisable to 
consider the maximum value, since it makes dis a tight lower bound of ^2- The 
maximum value of the scaling factor is termed the optimal scaling factor. For 
a complete explanation see [Ciaccia and Patella, 2002]. 

8.1.1 Lower-Bounding Functions 
Having given a definition for lower-bounding distance functions, we provide 

the reader with examples of some of the most common ones. When necessary, 
a scaling factor is provided. 



Foundations of metric space searching 37 

Lp Norms. Any Lp norm is a lower-bounding distance function for all Lp/ 
norms with p' > p. For example, let F — R x E be a 2-dimensional vector 
space. Given a pair of vectors x^y e V, the L2 and Li, distances are defined 
as follows: 

dL^ix.y) = Y (xi - yif + (x2 - y2)^ , 

dL^{x,y) = \xi - yi\ + \x2 - y2\' 

It is apparent that the Li metric function will always be bigger than L2 for the 
same pair of vectors given as arguments. Thus, L2 forms a lower-bounding 
function on Li. 

For all other norms, i.e., ^ < p, a lower-bounding scaled distance function 
1 _ i 

Lps can be defined. The optimal scaling factor is equal to 5 = 1/np^ p,where 
n is the dimensionality of the underlying vector space. 

Quadratic Form Distance Functions. In [Hafner et al., 1995, Seidl and 
Kriegel, 1997] it is proved that a lower-bounding distance function for the 
class of quadratic form distance functions dM (where M is the quadratic form 
matrix) is a scaled L2 norm, denoted L2s- The optimal scaling factor s is given 
by the square root of the minimum eigenvalue of M, s = ^minjjAj}, where 
XjS denote eigenvalues of M. 

Weighted Edit Distances. Let 7 be a weight function that assigns a non-
negative cost to each replacement operation of edit distance dedu- That is 
Va, 6 G S : 7(a -^ b) e M"̂ , where S is an alphabet over which strings are 
built. A weighted edit distance d^edit is then the lower-bounding function of 
d^edit if äiid only if 7'(a —> 6) < 7(a —̂  b) for every replacement a -^ b. 

Otherwise, a scaling factor for dy^dit i^ust be provided. The optimal scaling 
factor is given by the minimum ratio between the cost of edit operations with 7' 
versus 7 weight functions, that is, 5y^^ = mina,6GS,a7^6{7(<^ -^ b)/^'{a -^ 
b)}. The idea behind this is to fix 7' below the function 7 by multiplying the 
results of 7' with a value smaller than one (i.e., the scaling factor). 

Multi-set Distance. Given a string x, let ms{x) denote the multi-set (bag) 
of symbols in x. For instance, m5("tree") = {t, r, e, e}. The following can 
easily be proved to be a metric on multi-sets: dmsi^^y) — niax{|m5(x) — 
ms{y)\^ \ms{y) — ms{x)\}, where the difference has a bag semantics (e.g. 
{a, a, a, b} — {a, 6, c, c} = {a, a}) and | • | counts the number of elements 
in a multi-set (e.g. |{a, a} | = 2). It is immediately apparent that dmsi^i v) 
is a lower-bounding distance for the unweighted edit distance: \/x^y G S*, 
dms{x,y) < dedit{x,y). 
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8.2 User-Defined Metric Functions 
The notion of similarity, which ultimately determines the evaluation and the 

ranking of database objects, may vary from user to user. Thus, it should be 
made user-dependent to improve the effectiveness of similarity queries, so as to 
allow users sufficient flexibility in stating their preferences [Chomicki, 2002]. 
As an example, one user looking for a second-hand car on a trading site could 
be more interested in the car's price than its speed, whereas the opposite might 
hold true for another user. 

Preferences on simple domains, such as in the example above, are easy to 
adjust. However, it might be difficult to specify user's preferences for complex 
domains such as color histograms, since it requires defining all the histogram 
values. There are applications with even more complex domains, like multime-
dia or data mining systems, where the preferences are simply beyond imagina-
tion of an ordinary user. In this respect, the tuning of the parameters may best 
be left to the system, which takes the burden of automatically "learning" pref-
erences by monitoring the user's activity [Cetintemel et al., 2000] or exploiting 
feedback from previous queries [Ortega-Binderberger et al., 2002]. 

In a metric space, let us have an index structure built using a metric function 
di) defined on a domain V. Another metric function du on the same domain V 
is either explicitly specified by a user or automatically estimated by the system. 
The actual results of a user query must be computed according to du. To be able 
to exploit the index structure, the concept of lower-bound distance functions is 
used, as explained in the following. 

8.2.1 Searching Using Lower-Bounding Functions 

Because the user may specify a personalized function not constrained by the 
lower bounding concept, we define yet another metric function dp on domain 
D, such that dp is the lower-bound of both the building function d̂  and user's 
function du, i.e. 

Voi,02 G V : dp{oi,02) < 4(01,02),dp(oi,02) < c/^(oi,02). 

Therefore, we can use dp to search the index structure which has been built 
using di) and retrieve only "promising" objects. Next, we use du to filter out 
irrelevant (false positive) matches. 

More specifically, we retrieve a correct result-set for the user-specified query. 
Following the equations above, we can use dp in a particular evaluation of a 
similarity query in the index structure, because every distance measured by 
dp will always be less than or equal to d .̂ Thus we will always have at least 
the results obtained for d .̂ However, we may retrieve superfluous objects. The 
result will always contain all potential matches for the user-defined function du, 
but some false-positives may also have been added in. Again, this property is 
inherited from the fact that dp is a lower-bounding function of dw The filtering 
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phase ensures the results will not contain the irrelevant objects. A full proof 
along with modified algorithms for range and kNN queries can be found in 
[Ciaccia and Patella, 2002]. 

8.3 Embedding Metric Space 
As stated earlier, some distance functions can be very expensive computa-

tionally. Therefore, it is desirable to substitute cheaper distance functions like 
the Lp metrics for these calculations. A common approach to achieving this is 
to map, or embed, the set of objects into points in a low-dimensional embed-
ding vector space and conduct the search in that space. Intuitively, the rationale 
for performing such a mapping is that distances in the embedding space ap-
proximate the distances between objects in the original space but searching the 
embedding space is less expensive. 

We have outlined the concept in Section 8.1. We use a transformation func-
tion / , such that the distances in the embedded vector space form lower bounds 
on the distances in the original metric space. The range query R{q^r) evaluation 
process is modified as follows. (We focus on range queries only for the sake 
of simplicity, but other query types follow the same pattern.) The query object 
q is transformed using the function / into a vector q = f(q) in the embedded 
space. Next, the query R{q^ r) is evaluated in the vector space and a result-set 
is obtained. However, this result contains some objects which do not qualify 
for the original query and we must filter out these false positives in the original 
space. 

8.3.1 Embedding Examples 

Lipschitz Embedding. A Lipschitz embedding is defined in terms of a set 
S of subsets of X, S = {^i, 52,..., 5'/^}. The subsets Si are termed the ref-
erence sets of the embedding. Let d{o^ Si) be an extension of the distance 
function d to a subset Si C X, such that d{o^Si) — mmxeSi{d{o^x)}. An 
embedding with respect to S is defined as a mapping / such that f{o) = 
(d(o, S î), (i(o, 52 ) , . . . , d(o, Sk))' In other words, what we are doing is defining 
a coordinate space where each axis corresponds to a subset Si of the objects and 
the coordinate values of object o are the distances from o to the closest element 
in each Si. Under this definition, the embedding is not suitable for similarity 
search due to its large computational cost. Thus, a method called SparseMap 
proposed in [Hjaltason and Samet, 2003b] applied a heuristics aimed at reducing 
the cost of producing this embedding. 

Karhunen-Loeve transform. The Karhunen-Loeve transform (KLT) [Fuku-
naga, 1990] is a linear transformation that allows coordinate axes to be deter-
mined in such a way as to retain as much distance information as possible. It 
is essentially equivalent to Principal Component Analysis (PCA) [Dunteman, 
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1989]. In particular, for a database X of points in an n-dimensional Euclidean 
space, KLT identifies a new set of n coordinate axes, represented by an or-
thonormal set V = {^, ^"2,..., ^n} of basis vectors (i.e., each basis vector has 
a length of one and any two basis vectors are orthogonal). The set V is chosen 
such that the spread of points in X along an axis (represented by a vector from 
V) is maximal. 

The transformation function fk{o) for an object o E X is then defined as the 
projection of the point o onto the first k basis vectors in V. It can be proven 
that dk{fk{oi)j //c(ö2)) will preserve the distances as much as possible, in a 
mean-square sense, if d^ denotes the Euclidean distance in the transformed 
fc-dimensional Euclidean space. In other words, KLT results in the transfor-
mation that minimizes Eoi,02€X (4 ( / /C (ÖI ) , fk{o2)) - d{oi,02)f. Inspired 
by this embedding, a FastMap method for similarity searching was defined 
in [Faloutsos and Lin, 1995]. 

MetricMap. The previous two examples define an embedding applicable only 
on vector spaces. The MetricMap [Wang et al., 2000] is a technique which em-
beds a generic metric space M — (I>, d) into a fc-dimensional vector space. 
First, the metric space is transformed into an "imaginary" space using a subset 
P dV of size m, P = {pi,P2, • • • jPm}^ where m > k. The authors suggest 
setting m = 2k for best results. In the projected space, every object o e V is 
identified using a vector ^(o) = ((i(pi, o), d{p2j o ) , . . . , d{pm^ o)). This imag-
inary space has a basis (^ (p i ) , . . . , "^(pm))- As with the KLT technique, this 
basis is transformed to an orthonormal vector basis. The final /c-dimensional 
space is then formed using first k dimensions of the imaginary space. Further re-
finements and a detailed explanation of properties of the MetricMap embedding 
can be found in [Hjaltason and Samet, 2003b]. 

8.3.2 Reducing Dimensionality 

The embedding of metric space into vector space also offers the possibility of 
using other standard multidimensional vector space index structures, such as the 
Ä*-tree [Beckmann et al., 1990] or Ä^-tree [White and Jain, 1996]. However, 
as dimensionality increases, query performance in index structures degrades. 
Moreover, some embedding techniques may result in a very high-dimensional 
embedding space. Both problems may be solved for specific cases by reducing 
the dimensionality of the vector space. 

Such dimensionality reduction techniques assume that a few dimensions 
are sufficient to retain the salient information about the data objects repre-
sented, allowing other dimensions to simply be ignored. Typically, linear-
algebraic methods such as the Karhunen-Loeve Transformation [Fukunaga, 
1990], Discrete Fourier Transform [Oppenheim et al., 1999], Discrete Cosine 
Transform [Kailath, 1985], Discrete Wavelet Transform [Castelman, 1996] or 
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Singular Value Decomposition [Wall et al., 2003] are used to transform the 
original vectors into a new vector space where the distances are conveniently 
retained. 

From a metric-space perspective (since any vector space is a subspecies of 
metric space), we can see dimensionality reduction as a means of transforming 
the space in such a way that the distance function stays the same while the 
domain is changed from a high-dimensional vector space to a lower-dimensional 
one. For a more exhaustive explanation see [Carreira-Perpinan, 1997]. 

9. Approximate Similarity Search 
Similarity search in metric spaces is generally expensive and state-of-the art 

access methods still do not provide an acceptable response time for highly inter-
active applications. Fortunately, in many applications it is sufficient to perform 
an approximate similarity search where an inaccurate result-set is obtained. 
The attractiveness of this approach is emphasized by the fact that the approxi-
mate search is typically performed much faster. In the following, we set down 
the principles of approximate similarity search, describe generic algorithms to 
implement approximate range and the nearest neighbor search strategies, and 
finally discuss measures for assessing the performance of approximate simi-
larity search algorithms. Whenever confusion might occur, we use the term 
precise or exact similarity search for the non-approximate version. 

9.1 Principles 
Approximate similarity search techniques offer greatly improved efficiency 

vis ä vis precise similarity search, at a price of some imprecision in results. The 
general idea of approximation algorithms is to relax some constraints on the 
"precise" similarity search to reduce search costs, as measured by disk accesses 
and/or the number of distance computations. This obviously means/a/^^ hits 
ox false dismissals might occur. 

The use of the approximate similarity search is mainly justified by the fol-
lowing observations: 

• Similarity between objects is often subjective, thus very difficult to express 
by a unique rigorous function. For example, consider an image database. 
Given a query image and a set of candidate result images, different persons 
would make different choices as to which image is most similar to the 
query. But when the intuitive notion of similarity is formally defined by a 
mathematical formula (the distance function), subjectivity is not taken into 
account. Controlled imprecision which results in a faster similarity search 
might be tolerated by users. 

• Similarity search processes are intrinsically iterative. Users typically issue 
several similarity queries to the search system, possibly reusing previous 
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query results to express new ones. For instance, a user may start searching 
by using an initial image to find similar images. Not being satisfied with 
the result, the user may issue another similarity search query using one of 
the previously returned images as the reference. With such an approach, an 
efficient execution of elementary queries is important and users may accept 
some imprecision in the temporary results, provided query execution is fast. 

Approaches to approximate similarity search can be broadly classified into 
two categories [Ferhatosmanoglu et al., 2001]: 

1 Approaches which exploit transformation of the metric space; 

2 Approaches which reduce the subset of data to be examined. 

In the first category, approximation is achieved by changing the object repre-
sentation and/or distance function with the objective of reducing search cost. 
In the second category, strategies are used which omit parts of the dataset not 
likely to contain qualifying objects. 

Transformation techniques for metric spaces are thoroughly discussed in 
Section 8. As a typical example, consider dimensionality reduction in vector 
spaces. Good transformations are distance-preserving and satisfy the lower 
bounding property: distances in the transformed space are smaller than those 
computed in the original space. This implies that superfluous data, i.e., "false 
hits", may inhabit the result-set when a similarity search is executed in the 
transformed space. These false hits can be easily eliminated in a subsequent 
filtering step executed in the original metric space. However, if this second step 
is not applied, the search algorithm is approximate: the approximate similarity 
search is faster at the cost of false hits in the result. 

On the other hand, techniques that reduce the amount of data examined aim at 
improving performance by accessing and analyzing less data than is technically 
needed. In this book, we focus more on this class of approaches than metric 
space transformation techniques, which find their chief use in vector spaces. 
There are two basic approximation strategies that employ data reduction: 

• Early termination strategies stop the similarity search algorithm before its 
natural (precise) end. Similarity search algorithms are iterative processes 
in which the current result-set can be improved at each step. The precise 
algorithm stops when it detects that no further improvements are possible. 
Approximation algorithms, on the other hand, use a stop condition to decide 
the early termination of the algorithm. The algorithm terminates when it 
detects there is little chance significantly better results will be obtained. Here 
the hypothesis is that a good approximation can be had after some initial 
steps of the search iteration, while further iterations would only marginally 
improve the result-set and consume most of the total search costs. 
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Figure 1.17. A relaxed branching strategy might decide not to access regions 7?<i and Tis, which 
do not share objects with the query region, even if they overlap the query region. 

Relaxed branching strategies avoid accessing data regions that are not likely 
to contain objects belonging to the result-set. Precise similarity search al-
gorithms access all data regions overlapping the query region and discard 
others. Relaxed branching strategies are based on the definition of an ap-
proximate pruning condition to decide the rejection of regions overlapping 
the query region. Data regions are discarded when the condition detects a 
low likelihood for objects to occur in the space shared with the query re-
gion. Relaxed branching strategies are particularly useful for access meth-
ods based on a hierarchical decomposition of the space. 

Various approximation strategies can be implemented with specific defini-
tions of stop and pruning conditions. Chapter 4 presents some of the most 
relevant in detail. To get some flavor of them, a trivial early termination strat-
egy may involve simply stopping the similarity search algorithm after a certain 
percentage of the dataset has been accessed, or after a specified time has elapsed. 
In either case, some qualifying objects may obviously escape detection. A re-
laxed branching strategy, by contrast, is illustrated in Figure 1.17. The dataset 
is divided into three subsets, distinguished by the white, black, and gray points 
bounded by regions TZi,TZ2, and 7̂ ,3. In the example, the query region overlaps 
all three data regions, so all of them are accessed by the precise similarity search 
algorithm. But regions TZi, and TZs share no objects with the query region. A 
good relaxed branching technique should detect such situations and decide not 
to access these unpromising regions. 
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Approximate Range Search Algorithm 
Input: query region TZ{Q), approximation parameters Xg and Xp. 
Output: response set response. 

Enter information about an available entry into PR. 
response <— 0 
while PR 7̂  0 do 

Extract entry N = (G, 7^(G)) from PR. 
foreach object entry Oj e G do 

itd{q^Oj) < r then 
Oj -^ response 

enddo 
if S'top(response, Xg) then 

exit 
foreach non-object entry N^ = {G\n{G')) G G do 

if ^Prune{n{G'),n{Q),Xp) then 
Insert the entry N^ into PR. 

enddo 
enddo 

Figure 1.18. Approximate search algorithm for range queries. 

9.2 Generic Algorithms 
Algorithms for the approximate similarity search which exploit the early ter-

mination and relaxed branching strategies, can easily be obtained by modifying 
the generic similarity search algorithm discussed in Section 6.1. In Figures 1.18 
and 1.19, we present pseudocode for the approximate similarity range and the 
nearest neighbor search, respectively. 

The only difference from the exact versions shown in Section 6.1 is that the 
overlap test for regions is replaced by the pruning condition Prune, and the 
Stop condition is used to decide premature termination. Note that if the Prune 
function is a simple region overlap test and the Stop function is always false, 
the algorithms perform the precise similarity search. 

The generic stop condition 5top(response, Xg) takes as its arguments the 
current result-set response (the set of qualifying objects found up to the cur-
rent iteration) and the approximation parameter Xg- It returns true when the 
stop strategy determines the approximation requirements have been satisfied, 
respecting the approximation parameter Xg. The argument response is passed 
to the stop condition to emphasize the possibility of defining strategies that 
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Approximate Nearest neighbor Search Algorithm 
Input: query object q, number of neighbors k, 

approximation parameters Xg and Xp. 
Output: response set response of cardinality k. 

Enter information about an available entry into PR. 
Fill response with k (random) objects from X. 
Adjust TZ{Q) according to the maximum distance in the response 

from q designated as r. 
Sort entries in PR with decreasing region proximity to TZ{Q). 
while PR 7̂  0 do 

Extract the first entry Â  = {G, 7^(G)) from PR. 
if ^Prune{n{G),n{Q),Xp) then 

foreach object entry Oj e G do 
if d{q^Oj) < r then 

Update the response, r, and TZ{Q) by inserting Oj and 
removing the most distant object from q. 

Remove all entries N' = ( C , T^{G')) from PR 
which no longer intersects TZ{Q). 

endif 
enddo 
if iStop(response, Xg) then 

exit 
foreach non-object entry N' = {G\ n{G')) G G do 

if-^Prune{n{G'),n{Q),Xp) then 
Insert the entry N' into PR. 

enddo 
Sort entries in PR with decreasing region proximity to TZ(Q). 

endif 
enddo 

Figure 1.19. Approximate search algorithm for nearest neighbor queries. 

analyze the current response set to estimate the quality of the current approxi-
mation. 

The generic pruning condition Prune{TZ{G), T^{Q)^ ^p) takes as arguments 
the query region TZ{Q), the bounding region TZ{G) of entry N, and the approx-
imation parameter x^. It returns true when the pruning strategy determines 
that the entry covered by the data region can be discarded according to the 
approximation parameter Xp. It is important to point out that the region 71{G) 
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is obtained without accessing the entry N itself. Information on the region is 
in fact maintained in the already accessed parent entry of N. 

The approximation parameters Xg and Xp are used to tune the trade-off be-
tween efficiency and accuracy. Values corresponding to high performance offer 
low accuracy, because more qualifying objects may be dismissed. Values that 
give very good approximations correspond to more expensive query execution, 
because few entry accesses are avoided. Of course, the specific meaning of 
these two parameters and their use depend strictly on specific techniques em-
ployed to implement the stop and pruning conditions. Chapter 4 presents some 
of these techniques and defines their pruning and stop conditions. 

9.3 Measures of Performance 
Performance assessments of approximate similarity search algorithms focus 

on improvements in the efficiency and accuracy of approximate results. This is 
due to the natural tradeoff between the two - high improvements in efficiency 
vis ä vis a precise similarity search are typically obtained at the cost of accuracy 
in the results. To compare different approximate similarity search algorithms, it 
is important to know the relationship between the two measures. Good approx-
imate similarity search algorithms should demonstrate high efficiency, while 
still guaranteeing high accuracy of results. In the following, we define one 
measure of improvement in efficiency and several possibilities for assessing the 
accuracy of approximation. We also discuss the pros and cons of their possible 
application. 

9.3.1 Improvement in Efficiency 

The improvement in efficiency, IE, of an approximate search algorithm with 
respect to a precise algorithm is expressed as the cost ratio of the precise to 
approximate query execution. Formally, it is defined as 

cost{Q) 
cost^iQ) ' 

where cost and cost"^ denote the number of disk accesses for the precise and 
approximate execution of the query Q, respectively, which will be either R{q^ r) 
or kNN{q). For example, an efficiency improvement of IE == 10 means 
approximate execution is ten times faster than precise execution. Search costs 
could alternatively be measured by the number of distance computations, but 
experiments demonstrate that the two values are strongly correlated. 

9.3.2 Precision and Recall 

Provided query response sets are not empty, there are two well-known mea-
sures from the field of Information Retrieval that can be used to quantify ap-
proximation quality. Precision measures the ratio of qualifying retrieved objects 
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to the total of objects retrieved. Recall compares qualifying objects retrieved 
with the total number of qualifying objects which exist. Let S represent the 
result-set of a similarity search query and 5 ^ be the result-set returned by the 
approximation query. Precision, P , and recall, R, can be formally defined as: 

p_\sns^\ 

and 

\s\ 
Precision and recall are intuitive measures but their interpretation is not 

always obvious and may even be misleading. If an approximation algorithm 
for range queries has only false dismissals, i.e., it does not contain any false hits, 
the expression S"^ C S holds. This implies the precision is always one, so such 
a measure gives no useful information. Note that the approximate range search 
algorithm presented in Section 9.2 can only have false dismissals. On the other 
hand, given the fixed cardinalities of the precise and approximate response sets 
in the nearest neighbor queries, the recall and precision measures always return 
identical values. In addition, the measures do not consider response sets as 
ranked lists, so every element in the result-set is of equal importance. To clarify 
the last point, consider the following examples: 

Example 1 We search for one nearest neighbor and the approximation algo-
rithm retrieves the second actual nearest neighbor instead of the first one. 

Example 2 We search for one nearest neighbor and the approximation algo-
rithm retrieves the 10,000th actual nearest neighbor instead of the first one. 

Example 3 We search for ten nearest neighbors and the approximation algo-
rithm only misses the first actual nearest neighbor. Thus, the second actual 
nearest neighbor is in the first position, the third in second, etc. The eleventh 
nearest neighbor is in position ten. 

Example 4 We search for ten nearest neighbors and the approximate algorithm 
misses only the tenth actual nearest neighbor. Thus, the first actual nearest 
neighbor is in first position, the second in second, etc. The eleventh nearest 
neighbor is in position ten. 

In Examples 1 and 2, precision and recall evaluate to zero, no matter which ob-
ject is found as the approximate nearest neighbor. However, an approximation 
in which the second, rather than the 10,000th, actual nearest neighbor is found 
should be rated as preferable. Only one object is skipped in the first case, while 
in the second 9,999 better objects are ignored. 
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Figure 1.20. The relative distance error is not a reliable measure of approximation accuracy. 
Even though the relative distance error is small, almost all objects are missed by the approximate 
search algorithm. 

In both Examples 3 and 4, precision and recall are equal to 0.9. However, 
the result in Example 4 should be considered a better approximation because 
the error appears only in the last position, while in Example 3, the best object is 
missing and all other objects are shifted by one position. Observe that objects 
can only be shifted in such a way as to place them in better positions. These 
inconveniences are tackled in the following. 

9.3.3 Relative Error on Distances 

Another measurement to asses the quality of approximate nearest neighbor 
searches is the relative error on distances, proposed in [Arya et al., 1998]. The 
relative error on distances, ED, is defined as 

ED 
d{o^,q)-d{o^,q) _d{o^,q) 

d{o^,q) d{o^,q) - 1 , 

where o"^ is the approximate nearest neighbor and o^ is the actual nearest 
neighbor. The relative error on distances measures the quality of approximation 
by comparing the distance of the approximate nearest neighbor to that of the 
actual nearest neighbor from the query object. This can be easily generalized 
to the case of the j-th nearest neighbor as follows: 

EDj = 
d{of,q) 
d{of,q) 

1. 

The relative error on distances has a drawback in that it does not take into 
account the actual distribution of distances in the object domain - see Sec-
tion 10.1.2 for the definition of distance distribution and its usage in similarity 
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searching in metric spaces. In the following, we discuss some consequences 
such an approach may entail. 

The relative error on distances does not give an indication of the number of 
objects missed by the approximation algorithm. Specifically, suppose the dis-
tance between the first and the second actual nearest neighbor is large. Further 
suppose the approximation algorithm misses the first nearest neighbor o^, and 
the first approximate nearest neighbor o^ is actually the second nearest neigh-
bor. In this case the relative error on distances is high even if just one object is 
missed. And vice versa - suppose the relative error on distances is small, but 
the distance distribution is such that almost all objects have a distance smaller 
than o"^. In this case, many objects are missed even if the error is small. 

The situation in Figure 1.20 depicts the extreme case in which o^ has a dis-
tance larger than almost all remaining objects, even though still relatively close 
in distance to o^ from the query object q. When the distances are distributed in 
a very small interval close to the upper bound of possible distances, as shown 
in Figure 1.20, the relative error on distances always assumes small values. In 
fact, the distance of the object furthest from the query object is not very different 
from that of the object nearest to it. Moreover, errors on distances measured in 
different datasets cannot be compared. A specific value of the relative error on 
distances might have different interpretations in different datasets depending 
upon the distribution and range of distances. A particular relative error value 
which would be large in the context of one dataset might be negligible in another 
with a larger range or lesser density of measured distances. 

9.3.4 Position Error 

An alternate way of assessing the accuracy of approximate similarity search 
algorithms is to measure the discrepancy between the approximate ordered list 
and the exact ordered list, as discussed extensively in [Diaconis, 1988, Dwork 
et al., 2001, Narasimhalu et al., 1997, Critchlow, 1985]. A measure to assess the 
difference between two ordered (ranked) lists is the Sperman footrule distance 
(see e.g., [Diaconis, 1988]). Suppose we have two ordered lists Si and S'2 
containing all elements of a database X. The correlation between Si and S'2 is 
the sum of absolute differences between positions of each element in the two 
orderings. Given an ordered list S, we denote the position of the object o in S 
by S{o), o e S. The Sperman footrule distance is then given formally by 

SFD = J2\Si{oi)-S2{oi)l 

This can be normalized by dividing it by the maximum value possible, which 
is |X|V2. 
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Consider a result-set S^ returned by an approximate similarity search query, 
ordered with respect to the distance of objects from the query q. Let OX be the 
ordered list containing all elements of X, ordered by increasing distance from 
q. The previous measure cannot be used to assess the quality of S^ because it 
assumes the elements in both sets are identical. In our case, the ordered list S^ 
is a subset of OX. However, the Sperman footrule distance can be generalized 
to deal with partial lists resulting in the so-called induced footrule distance as 
follows: 

i=l 

Observe that the ordering of objects in OX is always preserved in the approx-
imate result 5^ . That is, given of, of e 5 ^ with OX {of) < OX{of), it will 
also be true that S'^iof) < S^{of). This is due to the fact that, even though 
an approximation algorithm can retrieve a different set of objects, both use the 
same distance function. As a consequence, the position of an object in S"^ is 
never higher than its position in OX, i.e., S'^{of) < OX{of), so the absolute 
value operator can be omitted. In addition, the measure can be normalized by 
thefactor|5^|- |X|. We use EP, error on the position, to denote the resulting 
measure: 

r.p_Tlf=lK0Xi0t)-S^{0f)) 
\S^\-\X\ 

Let us evaluate the accuracy of the four examples given in Section 9.3.2 using 
EP and suppose the cardinality of the dataset is n = 10,000. In Example 1, 
we have EP = {2 - l ) /n = 1/10,000 = 0.0001, while in Example 2, we 
have EP = (10,000 - l ) /n = 9,999/10,000 = 0.9999. Obviously, EP 
reflects the trivial fact that the approximation in Example 1 is much better than 
in Example 2. In Example 3, EP = 10/(10 • 10,000) = 0.0001, while in 
Example 4, EP = 1/(10 • 10,000) = 0.00001. The result-set of Example 4 is 
ten times better than that of Example 3. 

10. Advanced Issues 
The design and implementation of any search structure depends upon a num-

ber of models, theories, and specific feature data, which help in selecting op-
timum strategies for specific data and search requirements. Due to the novel 
principles which underlie metric data searching, such tools are also unique. In 
this section, we start with a specification of statistics on metric datasets based 
exclusively on distances and their distributions. Next, we concentrate on ap-
proaches for measuring the proximity of ball regions, because such regions 
typically bound subsets of searched data. We also survey performance predic-
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tion methods, including approaches for estimating the quality of metric data 
trees. Finally, we elaborate on strategies for selecting reference objects, called 
pivots. 

10.1 Statistics on Metric Datasets 
The statistical characteristics of datasets have always been important in the 

performance optimization of database systems. Statistical information forms 
the basis for cost models of query optimizers. It is also used to tune access 
structure configurations in the physical database design. Statistical information 
employed in commercial systems is typically based on histograms of frequency 
values for the records in a database, or, if the data can be represented in a vector 
space, on the data distribution. 

This type of information, though, cannot be used in generic metric spaces. 
Due to the lack of coordinates, the data distribution cannot be determined. Con-
sequently, the statistical information used to characterize metric datasets must 
rely exclusively on the distance density and the distance distribution functions. 
In the following, we first introduce probabilistic notions of density and distri-
bution functions. Then we discuss how these concepts apply to our scenario. 

10.1.1 Distribution and Density Functions 

Suppose F is a continuous random variable [Hoel et al., 1971], that is a 
real-valued function defined on a probability space, which depends upon an 
event occurring with zero probability. 

The distribution function Fy of the random variable V is the following 
probability: 

Fy{v) = ?-r{V <v]. 

For instance, suppose F is a continuous random variable associated with the 
distance between two objects in a metric space. Then Fy{y) is the probability 
that two objects exist with distance smaller than v. Note that in a continuous 
space the probability that the distance is exactly equal to v is zero. 

The density function fy of a random variable y is a function such that 

My) = r Mx)dx, 
J—oo 

Of course, the following always holds 
r+oo 

fy{x)dx — 1. 
/ 
«/—( If there are two random variables Vi and V2, we talk about tht joint distri-

bution Fy^y2{vi^V2) and the joint density /viy2(^i^ ^2)- The joint distribution 
is defined as 

Fy^y^{vi,V2) = Pr{Vi < ?;i A ^2 < '̂ 2} 
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and the joint density fviV2 (^i? ^2) is a function such that 

-00 ^ — 0 0 

As before, the following equation holds 

/

+00 r+00 

/ fv^V2{'^l'>^2)dXidX2 ^ 1. 

-00 J—00 

This can easily be extended to an arbitrary number of random variables. 

10.1.2 Distance Distribution and Density 

A useful property that characterizes datasets represented in vector spaces is 
the data distribution and the corresponding data density. Figure 1.21 shows the 
data density function, say fxiX2i^i^^2), in a two dimensional vector space, 
where Xi and X2 are continuous random variables corresponding to the coor-
dinates xi and X2 of vectors. In the figure, dark areas correspond to high values 
of fxiX2 (̂ 1? ^2)» while light areas correspond to low values. For example, the 
data distribution can be used for an arbitrary region of the space to determine the 
probability that a random object belongs to this region. Various cost models of 
access methods for data represented in vector spaces are based on the data distri-
bution, for example [Berchtold et al., 1997, Faloutsos and Kamel, 1994, Kamel 
and Faloutsos, 1993, Papadopulos and Manolopoulos, 1997, Theodoridis and 
Sellis, 1996]. 

In generic metric spaces, data distributions cannot be obtained because an 
object does not have an identifiable position and the only quantifiable property 
is the distance between objects. [Ciaccia et al., 1998a] have proposed a way of 
characterizing metric datasets by using the distance distribution. The distance 
distribution with respect to an object p (pivot) indicates the number of objects 
whose distance from p does not exceed a certain value or, in probabilistic terms, 
determines the probability that a random object has a distance from p smaller 
than or maximally equal to a certain value. In other words, the distribution of 
distances from p indicates how the other objects in the dataset are distributed 
around p. To give an intuitive idea of this statistical information, Figure 1.22 
depicts such a situation for a two-dimensional vector space. Note that the 
distance density does not provide information on the really "dense" zones of 
the space, because an object whose distance from pis x may be placed in any 
position on the circumference with center p and radius x. 

Formally, the distribution of distances with respect to a given object is defined 
as follows: 

DEFINITION 1.6 Let Dp be a continuous random variable corresponding to 
the distance d{p^ o), where o is a random object. The distance distribution 
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xz 

Xj 

Figure 1.21. Density of data in a two dimensional vector space 

.̂ 

Figure 1.22. Density of distances from the object p 

Fop (^) "^ith respect to object p is defined as 

Fopix) = PT{Dp <x} = PT{d{p,o) < x}. 

D 

The distance density fop (x) from the object p can be obtained as the derivative 
of the distance distribution FD^{X). 
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The distribution FD^ is sometimes called the p viewpoint to emphasize the 
fact that it gives the distance distribution as seen by p. Given two different 
objects Pi^Pj G V, the corresponding viewpoints FD^. and Fo^. are typically 
different functions. To simplify notation, in the following we use Fp. to indicate 
the distance distribution (or the viewpoint) with respect to the object pi. 

The overall distance distribution is a global (unique) property of a metric 
dataset. Given a distance x, the overall distance distribution represents the 
probability that distances smaller than x exist. In other words, it indicates what 
the probability is, given two random objects, that their distance is smaller than x. 
Contrary to the viewpoints of individual objects, the overall distance distribution 
is a single characterization of the entire dataset. The overall distribution of 
distances over V can be formally defined as follows: 

DEFINITION 1.7 Let oi and 02 be two independent random objects taken from 
V, The overall distance distribution F{x) on V is 

F{x) =Pr{d(oi,02) <x}. 

D 

Obviously, maintaining the overall distance distribution is much easier than 
maintaining the individual viewpoint of every object in the dataset. In fact, 
a single function is adequate for the updating process, instead of one func-
tion for every object in the database. From a computational point of view, the 
overall distance distribution is very difficult to obtain. However, it can easily 
be approximated by sampling a sufficient number of pairs of objects from the 
available dataset and computing their distances. In the following, we exam-
ine the possibility of substituting individual viewpoints by the overall distance 
distribution. 

10.1.3 Homogeneity of Viewpoints 

In [Ciaccia et al., 1998a], it is shown that the overall distance distribution 
can be substituted for the viewpoints, provided the dataset is probabilistically 
homogeneous, i.e., that there is no significant discrepancy between the various 
viewpoints. Assuming discrete distance functions, the discrepancy between 
two viewpoints is formally defined as 

5 (F^ , ,F^ . ) - avg \F^,{x) - F^.{x)\ , 
a:G[0,d+] 

where d'^ is the maximum distance between two objects of the dataset. The 
discrepancy between two viewpoints is the average difference of distance distri-
bution values, across all values of x. By analogy, the discrepancy for continuous 
distance functions can be defined [Ciaccia et al., 1998a]. Then, the index of 
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homogeneity of viewpoints, HV, is defined for the metric space M as 

HV{M) = 1- avg S{Fp„Fj„), 

where pi andp2 are random objects of D. When HV{M) ^ 1, two viewpoints 
are very likely to give the same probability for a given distance. That is, dis-
tances are distributed in almost the same way with respect to an arbitrary object, 
and any viewpoint can be chosen in place of any other. In addition, given the 
overall distance distribution as the average of all viewpoints, the overall dis-
tance distribution F{x) itself can be used as a representative of any Fp. - the 
overall distance distribution F{x) also has characteristics similar to any of the 
distributions Fp.. 

As reported in [Ciaccia et al., 1998a], datasets used in real similarity search 
applications are typically highly homogeneous. Therefore in practice, the over-
all distance distribution F{x) can be reliably applied to characterize a metric 
dataset. 

10.2 Proximity of Ball Regions 
There are several data management operations for which it is interesting to 

have an estimate of the number of objects in the intersection of ball regions. 
For example: 

region splitting, where ball regions obtained by splitting a larger region should 
share as few objects as possible. Otherwise, queries, which typically follow 
the distance distribution of searched datasets, would frequently access both 
sets; 

disk allocation, where ball regions sharing many objects need to be placed in 
consecutive (or nearby) blocks of a disk, because they have a high probability 
of being accessed together; 

approximate search, where ball regions are only accessed when the chance 
of an object appearing in the intersection with the query region exceeds a 
certain threshold. 

The number of data objects contained in the intersection of two ball regions 
depends on the distribution of data objects. Intuitively, there may be regions 
with a large intersection and few objects in common, but also regions with a 
small intersection and many objects in common, such as happens when the 
intersection covers a dense area of data space. The estimated count of objects 
actually shared by two ball regions is referred to as tho proximity of ball regions. 
In [Amato et al., 2003] this proximity is formally defined as follows: 
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Triangle inequality: 
Dz<D;+D2 

Figure 1.23. The overall proximity can be computed as the probability that an object is in the 
intersection of two regions of radii n and r2, given that the distance between their centers is z. 

DEFINITION 1.8 LetTZi = {pi',^i)jT^2 = {pi','^2) be two ball regions with 
centers pi, p2 and radii ri, r2, respectively. The proximity prox{TZi^TZ2) of 
ball regions TZi^ TI2 is the probability that a randomly chosen object o over the 
same metric space M appears in both regions. That is: 

prox{TZi,TZ2) = Pr{d{pi,o) < ri Ad{p2,o) < r2}. 

D 

To precisely compute proximity according to Definition 1.8, knowledge of 
distance distributions with respect to the regions' centers is needed. Since any 
object from V can become a region's center, such knowledge is very difficult 
to obtain. However, when the dataset is homogeneous (see Section 10.1.3), 
we can assume the distribution depends on the distance between the regions' 
centers, while remaining (practically) independent of the centers themselves. 
This also implies that all pairs of regions with the same radii and constant 
distance between centers have on average the same proximity, no matter their 
actual centers. Consequently, the proximity prox{TZi^TZ2) can be reliably 
estimated by the overall proximity of pairs of regions proXz{ri^r2) having 
radii r i and r2, with distance between their centers z. Specifically: 

DEFINITION 1.9 Let pi,p2 and o be random objects from V. Let Di.,D2and 
Dz be continuous random variables corresponding^ respectively, to distances 
dipii o), d{p2^ o), and d(pi^p2). The overall proximity proXz(ri.,r2) of any 
two ball regions with radii ri and r2 and distance between centers z is 

proXz{ri,r2) = Pr{i?i < ri A i?2 < '̂ 2 I Dz = z}. 

D 

A graphical representation that helps intuitively understand the definition of 
overall proximity in terms of random variables Di, D2, and Dz, is given in 
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Figure 1.24. Comparison between fDi,D2\Dz (^J vl^) ^^^ /01D2 {x, y), with a fixed z 

Figure 1.23. Overall proximity can be computed by using the joint conditional 
density fDi,D2\Dzi^^ vl^) ^s follows: 

Jo Jo 

Unfortunately, no generic analytic expression for fDi,D2\Dzi^^ vl^) ^^ known. 
In [Amato et al., 2003], precise heuristics to approximate it using the joint 
density fDiD2{^iy) ^^e proposed, analyzed and validated. The heuristics are 
based on the observation that, as shown in Figure 1.24, fDi,D2\Dzi^^y\'^) ^^ 
zero if x, y, and z do not satisfy the triangle inequality, because such distances 
in metric spaces simply cannot exist. However, foi 02(^1 y) is not restricted 
by such a constraint, and any pair of distances x and y is possible for any z. 
Visually it seems the joint conditional density can be obtained by collecting 
the values of the joint density outside the bounds of the triangle inequality, and 
dragging them to places where they are satisfied. A detailed description of 
the heuristics can be found in [Amato et al., 2003, Amato, 2002]. The main 
motivation is that the joint density fDiD2 {^1 y) is simple to obtain. In fact, Di 
and D2 are independent random variables, so /DID2(^5 y) — fvi (^) • fD2{y)-
Given the definition of the random variables Di and D2, it is also easy to show 
that foiix) = / D 2 ( ^ ) — /(^)» where f{x) is the overall distance density 
(please refer to Section 10.1.2). Therefore, the joint density is fDiD2{^i y) = 
f{x)f{y). The computational complexity needed to obtain the proximity using 
these heuristics is 0{n), where n is the size of the histogram representing f{x). 
In this case, the storage overhead for maintaining such a histogram is entirely 
acceptable even for large values of n. 
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10.3 Performance Prediction 
The problem of estimating CPU costs (mainly incurred by distance compu-

tations) and the I/O costs for processing range and nearest neighbor queries on 
distance data has been studied in [Ciaccia et al., 1998a]. Unlike the specific 
case of vector spaces, where information on data distribution can be exploited 
for predicting the performance of multi-dimensional access methods, no such 
possibility exists in generic metric spaces. This makes for a different problem 
that demands a novel approach. 

Suppose we have a dataset partitioned into m subsets bounded by ball regions 
T^i{pi')'^i)^ I < i < m. Given a range query R{q^rq), the content of the i-ih 
subset is accessed by the query if the corresponding ball region TZi intersects 
the query region, i.e., if d{q^pi) < u + Vq. Let TV — (p, r) be a ball region 
with random center p and radius r, bounding a subset. The probability of a 
decision to access the subset as R{q^ Vq) is processed can be estimated as: 

?r{d{q,p) <r + rq} = Fq{r + Vq) ^ F{r + Vq). 

This is clearly true if the homogeneity of viewpoints in the dataset is high. 
Suppose that for each subset we know the radius ri of the corresponding 

bounding ball region. We are now able to estimate the expected number of 
accessed subsets for a range query by summing the probabilities of accessing 
each of them as follows: 

m 

suhsets{R{q,rq)) ^ ^F(ri + rq). (1.1) 

Note that this does not take into account the cost of locating the position of a 
subset in the disk, which depends on the specific data structure used to organize 
the subsets. For example, in the case of a hierarchical organization of ball 
regions as exemplified in Section 6.1, the cost of locating subsets is already 
included in the cost of accessing the parent subset. 

As stated in Section 3, the evaluation of the distance between two objects can 
be expensive. Accordingly, the possibility of estimating the number of distance 
computations needed to execute a range query is very important. This can be 
obtained as 

m 

distances{R{q^rq)) ^ 2_] \^i\F{ri + r^), 
i=l 

where 1??.̂  | is the number of objects contained in the subset bounded by the ball 
region TZi. In fact, unless specific techniques are used to reduce the number of 
distance computations (see Section 7) , distances must be evaluated from the 
query object to all objects of the accessed subsets. 
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Finally, the following formula estimates the expected number of retrieved 
objects as 

objects{R{q,rq)) ^ nF{rq), 

where n is the total number of objects in the dataset. 
The expected execution cost of a nearest neighbor query is more complex to 

determine. Suppose a query kNN{q) returning o/. as the fc-th nearest neighbor. 
The optimal nearest neighbor search algorithm, as discussed in Section 6.1, 
accesses just those regions intersecting the query ball region TZ{q,d{q^Ok)). 
Therefore, the costs of the kNN{q) query are the same as the costs of the 
range query R{q^ d{q^ o/.)). Unfortunately, the object oj^ and consequently the 
distance d(q^ Ok) are not known a priori. A way to solve this problem is to use 
the distance density of the /c-th nearest neighbor as follows: Let DNNq^k be the 
continuous random variable corresponding to the distance of the fc-th nearest 
neighbor from the query object q and let foNNq^k ^^ the corresponding density 
function. 

According to [Ciaccia et al., 1998a], the density function foNNq^k ^^^ be 
obtained first by computing the distribution of DNNq^k as follows: 

FvNNq^ki^) = ?T{DNNq^k<x} 

= E I L . ( "^ ) Md{q. o) < xyPr{d{q^ o) > x}-^ 

?r{d{q, a) < xy?r{d{q, a) > x}""-' 

F{xy{l-F{x))''-\ 

Notice that a denotes a random object. Then the density can be obtained as the 
derivative: 

fDNN^^) = E ( r ) nxy-'f{x){i - F{x)r-'-\nF{x) - i). 

Now, the number of subsets accessed by a nearest neighbor search is obtained by 
integrating Equation 1.1 over the entire range of possible distances multiplied 
by the density of the distance to the /c-th nearest neighbor: 

subsets{kNN{q)) ^ / suhsets{R{q^r))fDNNqk{^)dr, 
Jo 

By analogy, the number of distance computations is given by the following 
formula: 

distances{kNN{q)) ^ / distances{R{q^r))fDNNqk{'f^)dr. 
Jo 
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In order to compute these cost prediction functions, statistics related to all 
subsets of the partitioned dataset should be kept. Since the number of subsets 
typically increases linearly with the size of the dataset, the amount of informa-
tion can become unacceptable. Depending on the specific data organization, 
the statistical information can be reduced while still maintaining a high degree 
of reliability for results. For example, consider a tree-based organization of 
ball regions as outlined in Section 7.1. In this case, we can maintain statistical 
information for each level instead of for each subset. Specifically, for each level 
/ we store only the number of subsets M/ and the average covering radius ri 
of ball regions at this level. The cost function for range queries can now be 
modified as follows: 

subsets{R{q, Tq)) ̂  ^ MiF{fi + Vq) 

and 

/ = i 

distances{R{q, Vq)) ^ ^ Mi^iF{ri + Vq), 

where L is the number of tree levels, and M^^i is the total number of objects 
in the dataset. The level-based cost function for nearest neighbor queries can 
be obtained analogously. 

In [Ciaccia et al., 1999], this approach was extended to deal with datasets 
where the homogeneity hypothesis is not satisfied. The extension consists 
in maintaining several distance distributions with respect to different objects 
called witnesses. Special algorithms are proposed to choose witnesses and de-
cide which distribution to use for a specific query. An extension of this approach 
is also proposed in [Amato et al., 2003] to derive a cost model for approximate 
range search queries in metric spaces. Another approach to performance pre-
diction has been proposed by [Traina, Jr. et al., 1999, Traina, Jr. et al., 2000a]. 

10.4 Tree Quality IMeasures 
As we will see in Chapter 2, many index structures for metric spaces are 

trees. For the moment, we can consider the hypothetical metric tree defined in 
Section 7.1. Given a tree, we would like to know whether the tree structure built 
over a dataset can be improved or not. We might also be interested in comparing 
two different trees to decide which of them is more efficient or optimal. Methods 
for such estimates are often based on a definition of the overlap between ball 
metric regions which cover individual nodes of the tree. 

When analyzing the theoretical search costs of a metric tree structure in 
terms of the number of distance computations or the number of I/O operations, 
it is typically assumed that the tree is "good" [Faloutsos and Kamel, 1994]. 
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However, in real situations, this is not necessarily true. The problem, nicely 
formulated by [Traina, Jr. et al., 2000b], is as follows: 

Given n objects organized in a metric tree structure, how can we express 
its 'goodness' or 'fitness' with a single number? 

To this aim, [Traina, Jr. et al., 2002] propose another concept of computing 
the overlap between two metric regions, based again on the number of objects 
covered by both regions. Specifically, the authors define a measure as follows: 
the overlap of two ball regions TZi and TZ2 is the number of objects in the 
corresponding subsets which are covered by both regions, divided by the total 
number of objects in these subsets. Notice that the quantified overlap is a real 
number between zero and one. Also observe the difference from the measure 
discussed in Section 10.2, where the overlap is related to the total number of 
objects in the dataset. 

The measure of "goodness" of a metric tree is strictly related to the defini-
tion of the overlap. The authors claim a good tree has very little and ideally 
no overlap between metric regions of individual nodes. The definition of the 
absolute fat-factor follows this strategy. 

DEFINITION 1.10 Let T be a metric tree with height h and m > 1 nodes 
which organize n objects. The absolute fat-factor ofT is 

n {m — h) ^ 

where Ic denotes the total number of node accesses required to answer point 
queries for all n objects stored in the metric tree. • 

The ideal metric tree requires accessing exactly one node per level and yields an 
absolute fat-factor of zero. By contrast, the worst tree visits all nodes regardless 
what point query is issued and the absolute fat-factor is equal to one. Using 
these two boundary examples, we can state the lower and upper limits on the 
value of Ic, i.e., the total number of accessed nodes for all n point queries. 
Accordingly, the lower bound is hn and the upper bound mn. 
The absolute fat-factor is based on the following two assumptions: 

• only range queries are taken into account; this is not very restrictive since a 
nearest neighbor query can be viewed as a special case of the range query; 

• the distribution of point queries follows the distribution of data objects; in 
general, this is quite reasonable because we expect that queries are most 
likely to be issued in dense regions of the metric space. 

To aid in understanding the absolute fat-factor, we provide the reader with 
an example of two trees organizing the same dataset (see Figure 1.25). The 
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(a) (b) 

Figure 1.25. An example of two tree structures with different absolute fat-factors: (a) fat{T) = 
0.2, and (b) fat{T) = 0.0. 

connecting lines are drawn only to emphasize the relationships of objects with 
their corresponding representatives. Both trees organize the same five objects 
and consist of two levels and three nodes, i.e., n = 5, /i = 2 and m = 
3, respectively. By issuing five point queries, we get Ic = H for the tree 
in Figure 1.25a. In this case, the absolute fat-factor is 0.2. For the tree in 
Figure 1.25b, Ic — 10, and the absolute fat-factor is zero. 

The notion of absolute fat-factor concentrates exclusively on the ratio of 
objects lying in overlapping regions. The main disadvantage to this approach 
is that it does not consider the number of nodes in trees, so a big tree with a low 
fat-factor is always better than a small tree with the fat-factor a bit higher. The 
relative fat-factor by [Traina, Jr. et al., 2002] assigns penalties to trees that use 
more than the minimum number of nodes. Such an approach does not consider 
the height and number of nodes of the actual tree, instead uses the respective 
characteristics of the minimum tree. Formally, the relative fat-factor is defined 
as follows. 

DEFINITION 1.11 Let The a metric tree with more than one node organizing 
n data objects. The relative fat-factor ofT is 

rfat[T) = -

where the minimum height is hmin = R^Sc^l ^^^ ^̂ ^ minimum number 
of nodes is rrimin = J2i=i^\'^/^^]' ^^^^ ^ representing the node capacity 
expressed as the number of objects. • 

The value of the relative fat-factor may vary from zero to a positive number that 
can be greater than one. 

In summary, the absolute fat-factor measures how satisfactory a tree is with 
respect to the number of objects in overlaps of regions on the same level, dis-
regarding any possible waste of disk space due to under-occupied nodes. The 
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Figure 1.26. Different choices for pivot p to divide the unit square. 

relative fat-factor extends this conception to compare trees with respect to both 
overlaps and the efficient occupation of nodes. 

10.5 Choosing Reference Points 
The problem of choosing reference objects (pivots) is important for any 

metric search technique, because all such structures need, directly or indirectly, 
"anchors" for partitioning and search pruning (see Sections 5 and 7.6). It is well-
known that a specific selection of pivots can affect the performance of search 
algorithms. This has been recognized and demonstrated by several researchers, 
e.g. [Yianilos, 1993, Bozkaya and Özsoyoglu, 1999, Shapiro, 1977]. Roughly 
speaking, the higher and more narrowly-focused the distance density is with 
respect to a pivot, the greater the chance a query object will be located at the 
most frequent distance from that pivot. For example, if the distance dm of a 
ball partitioning is the most frequent, and if all other distances are not very 
different, both resulting subsets are likely to be accessed for any given query, 
a very undesirable situation. Due to the complexity of the problem, pivots are 
often chosen at random. Obviously, random choice is the most trivial technique 
and does nothing to optimize pivot selection. Perhaps it is surprising, then, that 
many implementations use this approach with reasonable success. 

For Euclidean spaces, [Yianilos, 1993] explains why some elements of the 
space may be better pivots than the others. To illustrate, consider Figure 1.26, 
which presents a unit square with uniform data distribution. To divide the space 
using ball partitioning, we have to pick a pivot and conveniently set the radius 
dm- There are three natural choices for pivots: the midpoint prn^ the midpoint 
of an edge pe^ and a comer point pc> To choose among these possibilities, note 
that the probability of entering both regions is proportional to the length of the 
partitioning boundary in the square. Thus, we aim at minimizing the boundary 
length. From this perspective, the most promising choice is the comer point pc, 
with the object pe as second choice since it is still better than the central point 
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Figure 1.27. Distance densities for two pivots. One is the center while the other is a comer 
object, in the unit cube of a 20-dimensional EucUdean space. 

Prn- It is interesting that from a clustering point of view, prn is the center of a 
cluster but, as we have shown, it is the worst possible choice for partitioning. 
This observation can even be generalized by saying that a good pivot should 
be an outlier, that is an object located far away from the others, or one lying 
near the boundary of the space. Because of the generic metric, however, it's 
not always possible to define such an object. 

The heuristics that selects pivots from comers of the space can be used in 
applications where we have some idea of the geometry of the space, which is 
not often true in metric spaces. In [Bozkaya and Özsoyoglu, 1999], a different 
reason is given why comer pivots may be better than the others, i.e., why they 
provide better partitioning. Succinctly, the distance density for a comer point 
is flatter than the density for a central point. Figure 1.27 illustrates this for 
uniformly distributed points in a 20-dimensional Euclidean data space. As we 
can easily see, the distance density with respect to the central object is sharper 
and thinner. Setting the ball-partitioning radius to the peak value leads to a 
higher concentration of objects near the boundary and, as a consequence, a 
higher probability of visiting both regions. This does not apply, by contrast, to 
the comer point because the distance density is much flatter. Thus the search 
would involve more trimming. A simple heuristics which tries to respect these 
observations is as follows: 

• choose a random object, 

• compute distances from this object to all others, 

• select the furthest object as pivot. 

This simple procedure cannot guarantee choosing the best possible pivot but 
it can help choose a better pivot than would be got randomly. The authors 
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have verified this by experiment, with performance gains due to the heuristics 
varying between 5% and 10%. 

When several reference points are used for partitioning, the problem gets 
even more complicated. Intuitively, they should be fairly far apart, but the 
problem of finding k furthest objects is very time-consuming. An approach 
suggested in [Brin, 1995] works as follows: Given a set of n points from which 
m > 1 objects are to be chosen as pivots, we choose 3m objects at random 
to form a candidate set - the number three is an empirical suggestion by the 
author. From this candidate set, an object is picked and the furthest candidate 
object from this one is selected as the first pivot. Next, another candidate 
object furthest from the first pivot is promoted to the second pivot. Up to this 
point, the algorithm follows the approach previously proposed in [Bozkaya 
and Özsoyoglu, 1999]. The succeeding pivot is picked as the furthest object 
from the previous two pivots. By furthest, we mean that the minimum of 
distances is maximized. Specifically, the third pivot is such a candidate object 
whose minimum of distances to the previous pivots is maximal. The procedure 
described is repeated until all m pivots are found. A simple dynamic algorithm 
can do this in 0(3m • m) time. For small values of m, the process can be 
repeated several times with a different initial set of (random) candidate points, 
and the best setting of reference points is used. 

Recently, the problem has been systematically studied in [Bustos et al., 2001], 
where several strategies for selecting pivots were proposed and tested. The 
authors suggest an efficiency criterion that compares two sets of pivots and 
designates the better of the two. It uses the mean distance between every pair 
of objects in V, denoted by IJLV Given two sets of pivots Pi = {pi^P2^-- - jPt} 
and P2 = {PIJP2J . . . , p'J we call Pi better than P2 if 

However, the problem is how to find the mean for a given set P of pivots. An 
estimate of such a quantity is computed as follows: 

• at random, choose / pairs of objects {(01,0'^), (02,02),..., (o/, oj)} from 
the given database X CD; 

• all pairs are mapped into the feature space associated with the set of pivots 
P using the mapping function ^(•) (refer to Section 7.6); 

• for every pair (o ,̂ o^, compute the distance between Oi and ô  in the feature 
space, that is, di = Loo(*(oi), ^ (o^) ; 

• compute fxx>p as the mean of these distances, i.e., ßx>p = j J2i<i<i ̂ i-

As the most suitable strategy for real world metric spaces, the authors propose 
incremental selection. The advantage of this algorithm is that it is capable of 
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selecting pivots incrementally, depending on the need for new pivots. The 
strategy works as follows: First choose a set Pi = {pi} of one element from 
a sample of m database objects, such that the pivot pi has the maximum fi^p^ 
value. Then choose a second pivot p2 from another sample of m objects of 
the database, creating a new set P2 — {pi, P2} for fixed pi, maximizing ij.x>p^. 
The third pivot ps is chosen by analogy, creating another set P3 — {pi, P2,Ps} 
for fixed pi,P2» maximizing /j.x>p . This process is repeated until the desired 
number of pivots is determined. If all distances needed to estimate fxj^p are 
retained, only 2ml distances must be computed to estimate the new value of 
IJ.T) whenever a new pivot is being added. The total cost for selecting k pivots 
is 2lmk distance evaluations. 

The efficiency criterion presented above also tries to select pivots far away 
from each other. However, the key difference between this approach and the 
previous technique is that the criterion maximizes the mean of distances in 
the projected space and not in the original metric space. Specifically, it tries 
to spread the projected objects as much as possible according to the selected 
pivots. Note that these two procedures do not always go together. 

Rough guidelines from current experience can be summarized as follows: 

• good pivots should be/ar away from other objects in the metric space, 

• good pivots should be/ar away from each other. 

Finally, we would like to point out the dark side of the strategy of selecting 
pivots as outliers. Such an approach will not necessarily work in all possible 
situations. Consider a metric space with sets as data objects and the Jaccard's 
coefficient (see Section 3.5) as the distance measure. The outlier principle 
would select a pivot which is far away from the other objects. In the limit 
case, the selected pivot p would be completely different from the other objects, 
resulting in distance d{p, o) =^ 1 for any o in the database. Such an anchor is 
useless from the partitioning point of view, leaving the search unable to filter 
any single object. 



Chapter 2 

SURVEY OF EXISTING APPROACHES 

In this chapter, we give an overview of existing indexes for metric spaces. 
Other relevant surveys on indexing techniques in metric spaces can be found 
in [Chavez et al., 2001b] or [Hjaltason and Samet, 2003a]. In the interests of 
a systematic presentation, we have divided the individual techniques into four 
groups. In addition we also present some techniques for approximate similar-
ity search. Specifically, techniques which make use of ball partitioning will 
be found in Section 1, while Section 2 describes indexing approaches based 
on generalized hyperplane partitioning. A significant group of indexing meth-
ods computes distances to characteristic objects and then uses these results to 
organize the data. Such methods are reported in Section 3. In order to maxi-
mize performance, many approaches synergically combine several of the basic 
principles into a single index. The most important of these hybrid approaches 
are reported in Section 4. Finally, Section 5 treats the important topic of ap-
proximate similarity search, which trades some precision in search results for 
significant improvements in performance. 

1. Ball Partitioning IMethods 

The advantage of ball partitioning is that it requires only one pivot and, 
provided the median distance dm is known, the resulting subsets contain the 
same amount of data. Such a simple concept has naturally attracted a lot of 
attention and resulted in numerous indexing approaches being defined. In the 
following, we survey the most important of them. The first three structures 
assume discrete metric functions with a relatively small domain of values. The 
other methods can also be applied for continuous functions. 
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1.1 Burkhard-Keller Tree 
Probably the first solution to support searching in metric spaces was that 

presented in [Burkhard and Keller, 1973]. It is called the Burkhard-Keller Tree, 
BKT. The tree assumes a discrete distance function and is built recursively in 
the following manner: From an indexed dataset X, an arbitrary object p £ X 
is selected as the root node of the tree. For each distance i > 0, subsets 
Xi = {o e X, d{o^p) — i} are defined as groups of all objects at distance i 
from the root p. A child node of root p is built for every non-empty set Xi. 
All child nodes can be recursively repartitioned until it is no longer possible to 
create a new child node. When a child node is being divided, some object Oj 
from the set Xi is chosen as a representative of the set. A leaf node is created for 
every set Xi provided Xi is not repartitioned again. A set Xi is no longer split 
if it contains only a single object. Objects chosen as roots of subtrees (stored 
in internal nodes) are called pivots. 

The algorithm for range queries is simple. The range search for query R{q^r) 
starts at the root node of the tree and it compares its object p with the query 
object q. If p satisfies the query, that is if d(p, q) < r, the object p is returned. 
Subsequently, the algorithm enters all child nodes Oi such that 

max{d{q^p) — r^Gi] <i < d{q^p) + r (2.1) 

and proceeds recursively downward. Observe that Equation 2.1 cuts out some 
branches of the tree. The inequality is a direct consequence of the lower bounds 
provided by Lemma 1.2 (pg. 31). In particular, by applying the lemma with 
ri = i and r^ — i, we find that the distance from q to an object o in the inspected 
tree branch is at least max{d{q^ p) — i^i — d{q^ i^), 0}. Thus, we visit the branch 
i if and only if max{d{q^p) — i^i — d{q^p)^0} < r. 

Figure 2.1b shows an example where the BKT is constructed from objects 
of the space illustrated in Figure 2.1a. Objects p, oi, and 04 are selected as 
roots of subtrees, so-called pivots. The range query is given by the object 
q and radius r = 2. The search algorithm discards some branches and the 
accessed branches are emphasized in the figure. Obviously, if the radius of 
range query grows the number of accessed subtrees (branches) increases. This 
leads to higher search costs, which are usually measured in terms of the number 
of distance computations. During the range query evaluation, the algorithm 
traverses the tree and determines distances to pivots in internal nodes. Thus, the 
increasing number of accessed subtrees leads to a growing number of distance 
computations because pivots in individual nodes are different. 

BKTs are linear in space 0{n) and the construction complexity measured 
in terms of the number of distance computations is O(nlogn). Search time 
complexity, also measured in terms of distance computations, is O(n^), where 
a is a real number satisfying 0 < a < 1 which depends on the search radius 
and the structure of the tree, see [Chavez et al., 2001b]. 
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Figure 2.1. (a) An example of a metric space and a range query, (b) BKT built over the sample 
space. 

1,2 Fixed Queries Tree 
The Fixed Queries Tree, FQT, originally presented in [Baeza-Yates et al., 

1994], is a modification of the BKT. In contrast to BKTs, where pivots on 
individual levels are different. Fixed Queries Trees use a single pivot for all 
nodes at the same level (see Figures 2.1b and 2.2a). All objects in a given 
dataset X are stored in leaves and internal nodes are used for navigation during 
the search (or insertion). The range search algorithm is the same as for the BKT. 
The advantage of this structure is a reduced number of distance computations, 
because even if more than one subtree has to be accessed to evaluate a query, 
only one distance computation between the query object and a specific pivot 
per level is computed. The experiments presented in [Baeza-Yates et al., 1994] 
confirm that FQTs need fewer distance computations than BKTs. 

Figure 2.2a shows an example of an FQT built over the data of Figure 2.1a 
with objects p and 04 as pivots on corresponding levels. Observe that all objects 
are stored in leaves, including the objects selected as pivots. The branches 
highlighted represent the process that evaluates the query R{q^ 2). 

The space complexity is superlinear because the objects selected as pivots 
are duplicated, so the complexity varies from 0{n) to ö{n log n). The number 
of distance computations required to build the tree is 0{n log n). The search 
complexity is 0{n^), where a in the range 0 < a < 1 depends on the query 
radius and the object distribution in the metric space. 

A variant of the FQT, called the Fixed-Height Fixed Queries Tree, FHFQT, 
is proposed in [Baeza-Yates et al., 1994, Baeza-Yates, 1997]. This structure has 
all its leaf nodes at the same level, i.e., leaves are at the same depth h. In other 
words, shorter paths are extended by additional paths. The enlargement of the 
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Figure 2.2. Examples of (a) FQT and (b) FHFQT built over objects of the data space depicted 
in Figure 2.1a. 

tree can actually improve search performance, because the search process in 
the extended paths can be stopped before reaching the leaf. Note the distance 
computation to pivots for the extended paths does not typically imply extra 
costs, because such distances are computed due to the search needs of other 
(non-extended) paths. If we increase the height of the tree by thirty, we only 
add thirty more distance computations for the entire similarity search. We 
may introduce many new node traversals, but these are very cheap operations. 
However, thirty pivots filter out many objects, so the final candidate set is much 
smaller. This approach to filtering is explained in Section 7.6 of Chapter 1. For 
convenience, see Figure 2.2b where an example of the FHFQT is provided. 

The space complexity of the FHFQT is superlinear and lies somewhere be-
tween 0{n) and 0{nh), where h is the height of the tree. The FHFQT is 
constructed with 0{nh) distance computations. Search complexity is claimed 
to be constant 0{h), that is the number of distance evaluations computed to h 
pivots. The extra CPU time is proportional to the number of traversed nodes 
and remains 0{n^), where 0 < a < 1 depends upon the query radius and the 
indexed space. The extra CPU time is spent on comparing distance values (in-
tegers) and in traversing the tree. In practice, the optimal tree height h = \ogn 
cannot always be achieved due to the space limitations. 

1.3 Fixed Queries Array 
The Fixed Queries Array, FQA, is presented in [Chavez et al., 2001a, Chavez 

et al., 1999b]. Though the structure of FQA is strongly related to the FHFQT, 
it is not a tree structure. First, the FHFQT with height h is built on a given 
dataset X. If the root-to-leaf paths of the FHFQT are traversed in order from 
left to right and placed in an array, the result is the FQA. Each column consists 
of h numbers representing distances to every pivot utilized in the FHFQT. In 
fact, the sequence of h numbers is the path from the root of FHFQT to its leaf. 
The FQA structure simply stores the database objects lexicographically sorted 



Survey of existing approaches 71 

/ 
/ 
/ 

p o2 

\ 
\ 6 4 

/ 
V3 

\ N 
-<••-

5 
\ 1 / 1 \ 1 

ol o3 o4 o5 o6 o7 

FHFQT 

(a) 

••• o 4 p o2 ol o3 o4 o5 o6 o7 

0 2 2 3 4 4 4 5 -*=••• 

4 3 6 4 0 3 7 5 -*:••• 

FQA 

(b) 

... p 

... o4 

Figure 2.3. (a) An example of the FHFQT tree, (b) FQA built from the FHFQT. 

by this sequence of distances. Specifically, the objects are initially sorted with 
respect to the first pivot and those at the same distance are sorted with respect to 
the second pivot and so on. For illustration, Figure 2.3b shows the FQA array 
constructed from the FHFQT in Figure 2.3a. 

The range search algorithm is inherited from the FHFQT. Each internal node 
of the FHFQT corresponds to a range of elements in the FQA. Child nodes 
have a range of elements which is a subrange of their parents' range in the 
array. Naturally, there is a similarity between the FQA approach, the suffix 
trees, and the suffix arrays [Frakes and Baeza-Yates, 1992]. Navigation in the 
tree algorithm of the FHFQT is simulated by the binary search through the new 
range inside the current one. 

The FQA is able to use more pivots than the FHFQT, which improves effi-
ciency and search pruning. The authors of [Chavez et al., 2001a] show that the 
FQA outperforms the FHFQT. The space requirements are n • /i • 6 bits, where 
h is the number of bits used to store one distance. The number of distance 
computations evaluated during the search is 0{h). As proved in [Baeza-Yates 
and Navarro, 1998], the extra CPU complexity of the FHFQT is O(n^). The 
FQA has 0{n^\ogn) extra complexity, where 0 < a < 1. The extra CPU 
time is due to the binary search of the array. 

All the search structures presented above (BKT, FQT, FHFQT, and FQA) 
were designed for discrete metric functions, since a separate child is needed 
for any specific distance value. If we apply them to the continuous case, the 
tree degenerates to a flat tree of height one, and the search algorithm in effect 
performs a sequential scan. 

In order to properly transform the continuous case to the discrete, we must 
segment the domain of potential distance values into a small set of subranges. 
Two discretizing schemata for the FQA have been proposed in [Chavez et al., 
1999b, Chavez et al., 2001a]. The former divides the range of possible values 
into slices of identical width, the result being labeled a Fixed Slices Fixed 
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(a) (b) 

Figure 2.4. Examples of range queries: (a) So is not accessed, (b) both subsets must be visited. 

Queries Array. Such partitioning may lead to empty slices where no database 
object is accommodated. This, then, has motivated a more recent approach in 
which the entire range is divided into slices, each containing the same number 
of database objects. In other words, the domain is divided into fixed quantiles. 
The resulting FQA is called the Fixed Quantiles Fixed Queries Array. 

lA Vantage Point Tree 
The Vantage Point Tree (VPT) [Yianilos, 1993] is expressly designed for 

continuous distance functions, but discrete distance functions are also supported 
with virtually no modifications. It is based on the ball partitioning principle 
described in Section 5 of Chapter 1, which divides a set S into subsets ^i and 
S'2 based upon a chosen object p called a vantage point or pivot, and the median 
distance dm from p to the objects in S. Starting with the whole set of objects X 
and recursively applying this partitioning procedure leads to a balanced binary 
tree. Applying the median to divide a dataset into two subsets can be replaced 
by a strategy which instead employs the mean of distances from p to all objects 
in X \ {p}. This method, called the middle point in [Chavez et al., 2001b], may 
yield better performance for high-dimensional vector data. A disadvantage of 
the middle point strategy is that it may produce an unbalanced tree, impacting 
negatively on search algorithm efficiency. 

The search algorithm for a range query i?(g, r) traverses the VPT from root 
to leaves. For each internal node, it evaluates the distance d{q^ p) between the 
pivot p and the query object q. If d{q^ p) < r, the pivot p is reported to output. 
For internal nodes, the algorithm must also decide which subtrees to access. 
Doing so requires establishing lower bounds on the distances from q to objects 
in the left and right subtrees. If the query radius r is less than the lower bound, 
the algorithm does not visit the corresponding subtree. Figure 2.4a provides 
an example of a situation in which the inner ball region need not be accessed, 
whereas Figure 2.4b shows an example in which both subtrees must be checked. 
The lower bounds are established using Lemma 1.2 (pg. 31). More precisely, 
applying the equation and setting vi — Q and rh = dm, we have that the distance 
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(a) (b) 

Figure 2.5. An example of VPT with two pivots pi and p2'. (a) the 2-D overview and (b) the 
corresponding tree representation. 

from q to any object in the left branch is at least max{d{q^ p)—dm^O}. Likewise, 
setting ri = dm and r/j, = oo we get that the distance from q to an object in the 
right subtree is at least max{dm — d{q^ p), 0}. Thus, we enter the left branch if 
max{d{q^p) — dm^ 0} < r and the right branch if max{dm — d{q^p)^0} < r. 
Note both subtrees can be visited simultaneously. 

The ball partitioning principle applied in VPTs does not guarantee that the 
ball region around pivot p2 will be completely inside the ball region around 
pivot pi, which is the parent ofp2- For convenience, see Figure 2.5 where the 
situation is depicted for a query object q. In general, it is possible that the lower 
bound from q to a. child node is smaller than the lower bound from q to the 
child's parent node, that is 

max{d{q,p2) - dm2,0} < max{d{q,pi) - rfmi,0}. 

But this will not affect the behavior or correctness of the search algorithm -
objects rooted in the subtree ofp2 are not closer than max{d{q^ pi) — dmi, 0}, 
even though the lower bounds may claim the opposite. In other words, objects 
in the left subtree of p2 (the set So) are somewhere in the white area inside the 
ball region of p2 and not in the shaded region (see Figure 2.5). On the other 
hand, objects in the right branch (the set Si) must be in the hatch-marked area 
and not outside the ball region around pi. 

In constructing the VPT, many distance computations between pivots and 
objects are evaluated. For every object o in a leaf, distances are computed to 
each pivot p on the path from root to leaf. This information can be used to 
construct a more efficient search algorithm. The idea is employed in so-called 
VP^ trees, which are variants of VPTs proposed in [Yianilos, 1993]. Distances 
computed during insertion of objects are remembered and stored in the structure 
of the VP^ tree. They are then used in the range search algorithm as follows: 

• if \d{q^p) — d{p,o)\ > r holds, we discard the object o without actually 
computing the distance d{q, o). 
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• if {d{q^ p) + d{p^ o)) <r holds, we directly include the object o in the query 
response set, again without computing the distance d{q^ o). 

Given the distances d{q^p) and d{p^ o). Lemma 1.1 (pg. 29) forms the lower 
and upper bounds of the actual distance between q and o: 

\d{q,p)-d{p,o)\ <d{q,o) < d{q,p) + d{p,o). 

Thus the previous two pruning conditions are in fact direct consequences of 
Lemma 1.1. 

Another variant of the VPT, also proposed in [Yianilos, 1993], is called the 
Yps6 |.j.gg -pî jg |.j.̂ g jg ̂  further extension of the VP^ tree, where each leaf node 
is conceived as a bucket, that is, a unit of storage able to accommodate more 
than one object. 

1.4.1 Multi-Way Vantage Point Tree 

Figure 2.4b shows an elementary situation in which the search algorithm of 
the VPT must enter both subtrees and examine all objects. If such a situation 
occurs in many tree nodes, the global efficiency of the search deteriorates. 
In [Bozkaya and Özsoyoglu, 1997], the authors have tried to approach this 
problem by extending the binary VPT to a fc-ary tree, with k > 2. The tree uses 
k — 1 thresholds (percentiles) dmi r " ^ ^mk-i ^^ place of the single median dm 
to partition the dataset into k subsets via spherical cuts. The modified tree is 
called the Multi-Way Vantage Point Tree, mw-VPT. Unfortunately, experiments 
reveal the performance of mw-VPTs is not always better because the spherical 
cuts become too thin. Take, for example, the case of high-dimensional domains 
where distances between any pair of objects are practically the same. The 
search algorithm leads to more branches of the tree being accessed during 
query execution. If i of A: children of a node have to be searched then i distance 
computations are evaluated at the next level because all distances between the 
query object q and each pivot of the accessed children have to be determined -
the VPT keeps a different pivot for each internal node at the same level. 

Another extension of the VPT is called the Optimistic Vantage Point Tree, 
presented in [Chiueh, 1994]. This paper formulates algorithms for nearest 
neighbor queries and reports exhaustive performance tests on a database of 
image features. 

These VPTs require 0{n) space, the construction time for a balanced tree is 
0{n\ogn), and search time complexity is (9(logn). The author of [Yianilos, 
1993] claims this is only valid for very small query radii - too small to be 
interesting. The construction time of mw-VPT is ö{n\og^n) in terms of 
distance computations. The space complexity is the same, i.e., 0{n). Likewise 
search time complexity is 0{[og^ n). 
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Figure 2.6. (a) An example of bpp function with excluded points emphasized, (b) the VPF 
consisting of two trees. 

1.5 Excluded Middle Vantage Point Forest 
The Excluded Middle Vantage Point Forest, VPF, presented in [Yianilos, 

1999], is another structure based on the ball partitioning principle. The moti-
vation for the VPF comes from the following observation: Though the search 
time of the VPT [Yianilos, 1993] is sublinear, its performance depends upon 
not only the dataset, that is the distance distribution in X, but also on the choice 
of specific query object q. The VPF structure supports the worst-case sublinear 
search time for queries with a fixed radius up to the maximum p, so perfor-
mance does not depend on the query object distribution. The VPF introduces 
a new concept of excluding objects at middle distances by modifying the ball 
partitioning technique. This principle has already been described in Section 5 
of Chapter 1. For convenience, we repeat the key formula below. 

{ Oif d{o,p) <dm- p 
lifd{o,p)>dm + p (2.2) 

2 otherwise 
Figure 2.6a depicts an example of the bpp function, in which a dataset has 
been divided into two sets SQ^SI, with the exclusion set S2 containing objects 
excluded from the partitioning process. A binary tree is built recursively by 
repartitioning ^o and ^ i . The resulting exclusion sets ^2 are used to create 
another binary tree via the same principle. This procedure is repeated, and 
a forest of VPTs is produced. Figure 2.6b provides an example of the VPF. 
The first tree is built on the dataset X. All exclusion sets of the first tree, i.e., 
{S'2,82^82^}, are organized in the second tree. This process continues until 
the exclusion sets are not empty. 

Excluding objects at distances near the threshold dm has the outcome that 
no more than one branch of any internal node must be followed if the query 
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radius is less than or equal to p. The following tree is searched if and only if 
the excluded area must be visited. It is correct to have the search algorithm 
enter only a single subtree (left or right) because every pair of objects (a;, y) 
such that X belongs to the left subtree and y belongs to the right, must be at 
a distance greater than 2p, that is, d(x^ y) > 2p. To prove this, consider the 
definition of the bpp function in Equation 2.2. This implies d{xjp) < dm — p 
and d{y^p) > dm + P- Since the triangle inequality holds between x, y,p, we 
get (i(x, y) + d{x, p) > d{y^ p). Combining these inequalities and simplifying, 
we arrive at the desired formula, d(x, y) > 2p. 

The VPF is linear in 0{n) space, with a construction time of (9(n^~^), where 
0{n^~^) is the number of trees in the VPF. Similarity queries are answered in 
0{in}~^ log n) distance computations. In a parallel environment with 0{n^~^) 
processors, search complexity is logarithmic, (9(logn). The parameter 0 < 
a < 1 depends on p, the dataset, and the distance function. Unfortunately, to 
achieve a greater value of a, the p parameter must be quite small. 

2. Generalized Hyperplane Partitioning Approaches 
In this section, we survey methods based on an approach which is orthog-

onal to ball partitioning. Specifically, we focus on Bisector trees and variants 
on them called the Monotonous Bisector Trees and Voronoi Trees. Next, we 
discuss properties of Generalized Hyperplane Trees. All these techniques share 
a common architecture based upon generalized hyperplane partitioning. 

2.1 Bisector Tree 
Probably the first indexing structure to use generalized hyperplane partition-

ing was the Bisector Tree (BST), proposed in [Kalantari and McDonald, 1983]. 
The BST is a binary tree built recursively over a dataset X as follows: Two 
pivots pi, p2 are selected at each node and a hyperplane partition is applied. Ob-
jects nearer the pivot pi than p2 form the left subtree, while the objects closer to 
P2 create the right subtree. For each of the pivots, covering radii are established 
and stored in respective nodes. The covering radius is the maximum distance 
between the pivot and any object in its subtree. The search algorithm for range 
query i?(g, r) enters a subtree if d(g, p^) — r is not greater than the covering ra-
dius r^ of Pi. Thus, we can prune a branch if the query does not intersect the ball 
centered at pi with covering radius rf. The pruning condition d{qj pi) —r < rf 
is correct because its modification d{q^pi) — r^ < r is a direct consequence of 
the lower bound of Lemma 1.2 (pg. 31) with substitutions ri = 0 and r^ = rf. 
From the definition of the range query, d{q^ 6) is upper-bounded by the query 
radius r. 

A variant of the BST, called the Monotonous Bisector Tree (MBT), has been 
proposed in [Noltemeier et al., 1992b, Noltemeier et al., 1992a]. The idea 
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Figure 2.7. Generalized Hyperplane Tree (GHT): (a) a range query requiring access to both 
subsets of the hyperplane partition, (b) the corresponding structure of the tree. 

behind this structure is that one of the pivots of each internal node other than 
the root node is inherited from its parent node. Specifically, pivots representing 
the left and the right subtrees are copied to the corresponding child internal 
nodes, respectively. This technique results in a structure with fewer pivots, and 
thus fewer distance computations are needed to execute a query. 

BSTs are linear in space 0{n) and require 0{n log n) distance computations 
to construct the tree. Search complexity is not analyzed by the authors. 

An improvement on the BST called the Voronoi Tree (VT) is proposed 
in [Dehne and Noltemeier, 1987]. The VT uses two or three pivots in each 
internal node and also has the property that the covering radii are reduced as 
we move downwards in the tree. This provides better packing of objects in 
subtrees. The author of [Noltemeier, 1989] shows that balanced VTs can be 
obtained using an insertion algorithm similar to that of B-trees [Comer, 1979]. 

2.2 Generalized Hyperplane Tree 
The Generalized Hyperplane Tree (GHT) proposed in [Uhlmann, 1991] is 

very similar to the BST in that both partition the dataset recursively via the 
generalized hyperplane principle. The difference is that the GHT does not use 
covering radii as a pruning criterion during the search operation. Instead, the 
GHT uses the hyperplane between pivots pi and p2 to decide which subtrees 
to visit. Figure 2.7 depicts an example of the GHT. In (a), the partitioning is 
indicated and a range query specified. The corresponding tree structure can 
be seen in (b). At search time, we traverse the left subtree if d{q^pi) — r < 
d{q^P2) + ^' The right subtree is visited if d{q.,pi) + r > d{q^p2) — r holds. 
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Again, note that it is possible to enter both subtrees. Observe also that the first 
inequality comes from Lemma 1.4 (pg. 34) and from the fact that d{q^ o) < r, 
i.e., from the constraint given in the query specification. The second inequality 
is based on the same prerequisites, however. Lemma L4 is used in reverse, that 
is, the assumption about the position of o is (i(o,pi) > d(o,p2)- A modification 
of the GHT that adopts the idea of reusing one pivot from the parent node, 
applied in MBTs, is presented in [Bugnion et al., 1993]. 

The space complexity of GHTs is 0{n) and O(nlogn) distance computa-
tions are needed to construct the tree, the same as with BSTs. Unfortunately, 
search complexity was not analyzed by the authors. [Uhlmann, 1991] argues 
that GHTs should work better than VPTs in high-dimensional vector spaces, 
but no proof is provided. 

3. Exploiting Pre-Computed Distances 
When distance computations become expensive, a sound objective is to re-

duce their number to a minimum. To give efficient answers to similarity search 
queries, [Shasha and Wang, 1990] have suggested using pre-computed distances 
between data objects. For a datafile of n objects, a table of size n x n is used to 
store distances between data objects once computed. Pairwise distances which 
are not stored are estimated as intervals using the pre-computed distances. Dis-
tances unknown in advance will be, e.g., those from a query object to database 
objects. This technique of storing and using pre-computed distances may be 
effective for datasets of small cardinality. But space requirements and search 
complexity become overwhelming for larger files. 

In this section, we discuss other techniques based on a matrix of distances 
between objects in a metric space. Specifically, we present the Approximating 
and Eliminating Search Algorithm and its linear variant. We also briefly men-
tion other modifications or improvements, such as TLAESA, ROAESA, and 
Spaghettis. 

3.1 AESA 
The Approximating and Eliminating Search Algorithm (AESA), presented 

in [Vidal, 1986, Vidal, 1994], uses a matrix of distances between database 
objects which have been computed during the creation of the AESA structure. 
The structure is simply an n x n matrix holding the distances between all pairs 
of n database objects. Due to the symmetry property of metric functions only 
that half of the matrix lying below the diagonal need to be stored, resulting in 
n{n — l ) /2 distances. Unlike the methods of previous sections, every object 
in the AESA plays the role of pivot. 

The search operation for a range query R{q^ r) (and similarly for nearest 
neighbor queries) picks an object p at random and uses it as a pivot. The distance 
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from ^ to p is evaluated and used for pruning some objects. An object o can be 
pruned if \d{q^p) — d{p^ o)\ > r, i.e., if the lower bound from Lemma 1.1 on 
page 29 is greater than the query radius r. Note again that this pruning condition 
only utilizes distances which have already been evaluated. The algorithm then 
chooses another pivot from among the still remaining objects. The choice of 
pivot is influenced by the lower bound \d{q^p) — d{p^ o)\. Since we want to 
maximize the pruning effect, we must maximize the lower bound resulting 
in the choice of the closest object p to q [Vidal, 1986]. The new pivot is 
used in the pruning condition to further eliminate some non-discarded objects. 
The process is repeated until the set of non-discarded objects is small enough. 
Finally, the remaining objects are checked directly with q, i.e., distances d(q^ o) 
are evaluated and objects satisfying d{q^ o) < r are returned. 

According to experiments presented in [Vidal, 1994], AESA performs an 
order of magnitude better than competing methods and it is argued that it has a 
constant query time with respect to the size of database (0(1)). This superior 
performance is obtained at the expense of quadratic space complexity 0{n?) 
and quadratic construction complexity. The extra CPU time is spent scanning 
the matrix, and ranges from 0{n) up to O(n^). However, we should note 
that one distance computation is much more expensive than one scan through 
the matrix. Although its performance is promising, AESA is applicable only 
for small datasets. If, by contrast, range queries with large radii, or nearest 
neighbor queries with high k are specified, AESA tends to require 0{n) distance 
computations, the same as a trivial linear scan. 

3.2 Linear AESA 
The main drawback of the AESA approach being quadratic in space is solved 

in the Linear AESA (LAESA) structure [Mico et al., 1992, Mico et al., 1994]. 
This works around the problem by storing distances from objects to only a 
fixed number m of pivots. Thus, the distance matrix is n x m rather than the 
n(n — 1) entries used in the AESA. However, this has its price: a new problem 
arises in choosing appropriate pivots. In [Mico et al., 1994], the pivot selection 
algorithm attempts to choose pivots that are as far away from each other as 
possible, in keeping with the observations noted in Section 10.5 of Chapter 1. 

The search procedure is nearly the same as in the AESA, except for the fact 
that some objects will not be the pivots. Thus, we cannot choose the next pivot 
from non-discarded objects up to now, because we might have eliminated some 
pivots. First, the search algorithm eliminates objects using all pivots. Then, all 
remaining objects are directly compared with the query object q. More details 
can be found in [Hjaltason and Samet, 2000], which also provides a description 
of the nearest neighbor search algorithm. 

The space complexity and construction time of LAESA are 0{mn), while 
search complexity is m + 0(1). The extra CPU time can be reduced by a 
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modification called Tree LAESA (TLAESA), proposed in [Mico et al., 1996]. 
TLAESA builds a GHT-like structure using the same m pivots, with the ex-
tra CPU time being between (9(logn) and 0{mn). The AESA and LAESA 
approaches are compared in [Rico-Juan and Mico, 2003]. 

3.3 Other IMethods 

A structure similar to the LAESA is proposed in [Shapiro, 1977]. It also 
stores run distances in a matrix n x m. However, the search procedure for 
R{q^r) queries is slightly different. Database objects (o i , . . . On) are sorted 
according to their distance from the first pivot pi. The search starts with the 
object Oi such that |d(pi, ô ) — d{pi^q)\ is minimized, for i = 1 , . . . , n. Note 
that this is the lower bound on d{q^ oi) defined by Lemma 1.1. In other words, 
we start with an object potentially closest to q. The object Oi is checked against 
all pivots pj (j = 1 , . . . , m) and if \d{pj^Oi) — d{q^ pj)\ > r is true for any pj, 
then Oi cannot qualify for Ä(g, r). Observe that distances d{pj, Oi) are stored in 
the matrix and the distances d{q^pj) are computed only once at the beginning 
of the query evaluation. If Oi is not eliminated by this condition, the distance 
d{q^ Oi) must be computed to decide whether Oi qualifies or not. The search 
continues with objects 0^+1,0^-1,0^+2? 0^-2,... until the pruning conditions 
\d{pi, Oi+c) - d{q,pi)\ > r and \d(pi, Oi^c) - d{q,pi)\ > r are valid. 

Another improvement on LAESA is a method called Spaghettis, introduced 
in [Chavez et al., 1999a]. This approach also stores run distances, organized in 
m arrays of length n. Each array of distances to a pivot is sorted according to 
the distances it contains. The order of any two objects o ,̂ Oj may be inconsistent 
from one array to another, since distances to the corresponding pivots may differ 
e.g. d{pi^Oi) < d{pi^Oj) mid d{p2^0i) > d{p2^0j). Thus, permutations of 
objects must be stored with respect to the preceding array. During the range 
search, m intervals are defined on individual arrays, [d{q^pi) — r^d{q^pi) + 
r ] , . . . , [d{q^pm) — 5̂ d[q^pm) + v]. All objects that qualify for the query will 
belong to the intersection of all these intervals. Each object in the first interval 
is checked to see whether it is a member of all other intervals - the stored 
permutations are used for traversing through arrays of distances. Finally, the 
non-discarded objects are compared with the query object for qualification. The 
extra CPU time is reduced to 0{m log n). 

Both AESA and LAESA have an overhead of 0{n), measured in terms of 
computations other than distance evaluations (i.e., searching the matrix). The 
Reduced Overhead AESA (ROAESA) from [Vilar, 1995] applies heuristics to 
eliminate unneeded traversals of the matrix. However, this technique is only 
applicable to nearest neighbor queries, and the range search algorithm is not 
accelerated. A variant of LAESA, designated the Approximating fc-LAESA 
(Ak-LAESA), is presented in [Moreno-Seco et al., 2003]. This variant pro-
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vides a faster algorithm for kNN queries particularly designed for classification 
purposes. 

4. Hybrid Indexing Approaclies 
Indexing methods which employ pre-computed distances provide promising 

performance boosts in terms of computational costs. Their disadvantage lies in 
their enormous space requirements. A straightforward remedy is to combine 
both the partitioning principle and the pre-computed distances technique into 
a single index structure. Basically this entails having search algorithms take 
advantage of stored pre-computed distances while traversing a hierarchy-like 
structure built using partitioning principles. 

Such an approach is applied to Multi Vantage Point Trees, presented later 
in this section. We also tackle slightly different approaches based on Voronoi 
diagrams, namely the Geometric Near-neighbor Access Tree and the Spatial 
Approximation Tree. Finally, we also provide the reader with a short summary 
of the M-tree, a disk-based access structure which has become very popular. 
The M-tree and its variants are discussed in-depth in Chapter 3. In addition, we 
briefly mention the new concept of similarity hashing, which is again analyzed 
in greater depth in the next chapter. 

4.1 Multi Vantage Point Tree 
The Multi Vantage Point Tree (MVPT) [Bozkaya and Özsoyoglu, 1997, 

Bozkaya and Özsoyoglu, 1999] is an extension of the VPT. The motivation 
behind the MVPT is to cut down on the number of pivots used to construct a tree, 
since computing distances between a query object and pivots brings significant 
search costs. One source of motivation is the FQT described in Section 1.2. 
Another interesting approach to helping reduce distance computations is based 
on storing distances between pivots and objects in leaf nodes - such distances 
are computed in the course of tree construction. The extra information kept in 
leaves is then exploited by a sort of filtering algorithm, explained in detail in 
Section 7.6 of Chapter 1. The filtering algorithm dramatically decreases the 
number of distance computations needed to answer similarity queries. 

The MVPT uses two pivots in each internal node, instead of one as in the 
VPT. Thus, each internal node can be considered to be two VPT levels collapsed 
into one node. There is one significant difference. While VPTs use different 
pivots at lower levels, MVPTs apply only one. Thus all children at the lower 
level employ the same pivot. This allows for fewer pivots while still preserving 
the fanout, or degree of branching. Figure 2.8 depicts a situation where a VPT 
is collapsed into an MVPT. Observe that some sets are partitioned using pivots 
that are not members of the sets. This never occurs in VPTs. In Figure 2.8b, 
so is the set around pi which is divided using p2 and the radius dm^. In this 
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Figure 2.8. Comparison of the VPT and MVPT structures: (a) VPT with three pivots for 
partitioning to four sets, (b) MVPT using only two pivots. 

case, each pivot leads to two subsets, which implies that the fanout of an MVPT 
node is 2^. Since a pivot can generally partition data into m subsets, an internal 
node can root m? child nodes. In addition, MVPT can employ k pivots in each 
internal node, which implies a fanout of m^. Moreover, each object in the leaf 
node is associated with a list of distances to the first / pivots, which are used 
for additional pruning at search time. 

Since no objects are duplicated, space complexity is 0{n) - objects chosen as 
pivots appear only in internal nodes. However, MVPTs need some extra space 
to keep I pre-computed distances for each object in leaves. Construction time 
complexity is 0{nk log^k n), where log f̂c n is the height of the balanced tree. 
Search complexity is 0{k log^k n), but is valid only for very small query radii. 
In the worst case, search complexity will be 0{n). The authors of [Bozkaya and 
Özsoyoglu, 1999] show experimentally that MVPTs outperform VPTs, which 
they mainly attribute to the greater number of pivots in internal nodes rather 
than the increased fanout m. The largest performance boosts are achieved by 
storing more pre-computed distances in leaves. 

4,2 Geometric Near-neighbor Access Tree 
The Geometric Near-neighbor Access Tree (GNAT), proposed by [Brin, 

1995], uses m pivots in each internal node. Specifically, a set of pivots P = 
{pii • • • ?Pm} is chosen and the dataset X is split into S^i,..., Sm subsets, de-
pending on the shortest distance to a pivot in P. In other words, for any object 
o G X — P, o is a member of the set Si if and only if d{pi^ o) < d{pjjo) for 
all j = 1 , . . . , m. Thus, applying this procedure recursively we build an m-ary 
tree. Figure 2.9 shows a simple example of the first level of a GNAT structure. 
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Figure 2.9. The Geometric Near-neighbor Access Tree: (a) an example of partitioning, (b) the 
corresponding tree. 

Observe the close relationship between this idea and the Voronoi-like partition-
ing of vector spaces [Aurenhammer, 1991]. Each subset Si corresponds to a 
cell in the Voronoi diagram - GNAT calls this cell the Dirichlet domain. The 
parameter m is adjusted according to the level of the tree. In fact, the number 
of children (i.e., the value of m) should be proportional to the number of data 
objects allocated in the node. 

Besides applying the m-ary partitioning principle, the GNAT also retains 
objects' distances to their respective pivots. This enables additional pruning 
during the search, resulting in a range search algorithm quite different from the 
one used for the GHT. In each internal node, an m x m table consisting of 
distance ranges is stored. Specifically, the minimum and maximum distances 
between each pivot pi and the objects of each subset Sj are stored. Formally, 
the range [r\^, r^^], i^j = 1 , . . . , m, is defined as follows: 

^J _ min d{pi,o), 
oeSjU{pj} 

r^u = max d{pi^o). 
oeSjU{pj} 

Note that the lower bound r^ for pivot pi itself is equal to zero, since the 
minimum is at distance d{pi^pi) = 0. Figure 2.10 illustrates two ranges. The 
first [r̂ *-̂ , r^j^] is defined for pivot pi and set Sj around pivot pj, while the second 
is [rj-^, rj^^] for pivot pj itself. 
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Figure 2.10. An example of the pruning effect of ranges in GNAT for two queries R{qi,ri) 
andi?(^2,r2). 

The range search algorithm for query R{q^ r) proceeds depth-first. In each 
internal node N, the distances between q and the pivots of Â  are computed 
and subtrees not containing qualifying objects are eliminated. After all dis-
tances from q to pivots have been computed, the algorithm visits all subtrees 
that remain. Starting with the set of pivots P , the procedure applied in each 
internal node is described in the following steps: First, pick one pivot pi from 
P (repeatedly, but do not pick the same pivot twice) and compute the distance 
d{pijq). If d{pi,q) < r holds, the pivot pi is returned in the query result. 
Afterwards, for all pj E P we remove pj from P if d{q^pi) — r > r]^ or 
d{q^ Pi) + r < r\^. The inequalities are direct consequences of the lower bound 
max{d{qjPi) — r]^^rl'^—d{q^Pi)} < r of Lemma 1.2 (pg. 31) with d(g,o) < r. 
When all pivots in P are examined, the subtrees of the node N corresponding 
to the remaining pivots in P are visited. Note that a pivot pj can be discarded 
from P before its distance to q has been evaluated. Figure 2.10 depicts a sit-
uation in which two range queries P(gi , r i ) and ^(^2,^2) are given. In this 
example, only the range [r}^ ̂ r]^] is sufficient for the query Ä(gi, ri) to discard 
Pj. However, the other query requires the additional range[rĵ ,r;̂ *^] to prune 
the subtree around pj. 

The space complexity of the GNAT index structure is 0{nm'^), because 
tables consisting of m? elements are stored in each internal node. GNAT is 
built in 0{nm log^ n) time. The search complexity was not analyzed by the 
authors, but experiments in [Brin, 1995] reveal that the GNAT outperforms the 
GHT and VPT structures. 
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4.3 Spatial Approximation Tree 
The indexes which have been described so far all use a partitioning principle 

to recursively divide the data space into subsets. For example, the GHT and 
GNAT are inspired by the Voronoi-like partitioning. In the follov^ing, we intro-
duce the Spatial Approximation Tree, the sa-tree (SAT), proposed in [Navarro, 
1999, Navarro, 2002]. The SAT is also based on the Voronoi diagrams, but in 
contrast to the GHT and GNAT it tries to approximate the structure of the Delau-
nay graph. Given a Voronoi diagram, a Delaunay graph, defined in [Navarro, 
2002], is a graph where each node represents one cell of the Voronoi diagram 
and where nodes are connected with edges if the corresponding Voronoi cells 
are directly neighboring cells. In other words, the Delaunay graph is a repre-
sentation of relations between cells in the Voronoi diagram. In the following, 
we use the term object for a node of the Delaunay graph and vice versa. 

The search algorithm for the nearest neighbor of a query object q starts with 
an arbitrary object (node in the Delaunay graph) and proceeds to a neighboring 
object closer to q as long as it is possible. If we reach an object o where all 
neighbors of o are further from q than o, the object o is the nearest neighbor of q. 
The correctness of this simple algorithm is obvious. Unfortunately, it is possible 
to show that without more information about a given metric space M = (P^d), 
knowledge of the distances between objects in a finite set X C D does not 
uniquely determine the Delaunay graph for X (for further details see [Navarro, 
2002, Hjaltason and Samet, 2003a]). Thus, the only way to ensure the search 
procedure is correct is to use a complete graph, that is, the graph containing all 
edges between all pairs of objects in X. However, such a graph is not suitable 
for searching because the decision as to which edge should be traversed from 
the starting object requires computing distances from the query to all remaining 
objects in X. This boils down to a linear scan of all objects in the database and 
thus, from a searching point of view, is useless. 

For a dataset X, the SAT is defined as follows: An arbitrary object p is 
selected as the root of the tree and the smallest possible set N{p) of all its 
neighbors is determined so that: 

o e N{p) ^ Vo' G N{p) \ {o} : d(o,p) < d{o, o'). 

The intuition behind this definition is that for a valid set N{p) (not necessarily 
the smallest), each object of N{p) is closer to p than to any other object in N{p) 
and all objects in X\A/^(p) areclosertoanobjectin A/'(p) than top. Figure 2.11b 
shows an example of SAT built on a dataset depicted in Figure 2.11a. The 
object Ol has been selected as the root node. The set of neighbors for oi is 
N{oi) = {02,03,04,05}. Note that object 07 cannot be included in N{oi) 
since 07 is closer to 03 than to oi. 

To build the tree, a child node is defined for every neighbor and the objects 
nearest the child are structured in the same way as defined above. The distance 
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F/gwr^ 2.11. An example of SAT: (a) the dataset, (b) SAT structure with the root oi. 

to the furthest object o from p is also stored in each node, i.e., for the root node, 
maxoex{ci(p, o)}. In conventional terminology, it is the covering radius r^. 

As argued in [Navarro, 2002], the construction of N{p) is NP-complete, so 
a heuristics is proposed which builds the set N{p) in a way which may not be 
minimal. The method of selecting the set of neighbors influences the shape of 
the resulting tree. When the set is not minimal the fanout of the tree increases, 
which impacts upon search costs. The heuristics starts with an object p, a set 
S = X\ {p}, and initially empty set N{p). We first sort the members of S 
with respect to their distance to p. Next, we pick an object o from S and add 
it to N{p) if it is closer to p than any other object in N{p). In this fashion, we 
incrementally construct a suitable set of neighbors. 

The range search algorithm for the query Ä(g, r) starts at the root node and 
traverses the tree, visiting all non-discardable subtrees. Recall that at the node 
p, we have the set of all neighbors N{p). The algorithm first finds the closest 
object Oc G N{p) U {p} to q. Then, it discards all subtrees o^ 6 N{p) such that 

d{q,Od)>2r + d{q,Oc). (2.3) 

Such a pruning criterion is correct and is a consequence of Lemma 1.4 (pg. 34) 
with substitutions pi =• Od and p2 = o^ In particular, we get 

max{ ,0} < d{q,o). 

Providing that d{q, o) <r (the range query constraint) and q is closer to Oc than 
to Od we get {d{q^ Od) — d{q^ Oc))/2 < r. The branch Od can easily be pruned if 
{d{q, Od) — d{q^ Oc))/2 > r, which is exactly what we desired. 

The reason we select the closest object Oc to q is we want to maximize the 
lower bound of Lemma 1.4. When the current node is not the root of tree, 
we can even improve the pruning effect. Figure 2.12 depicts a sample SAT 
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Figure 2.12. A sample of the SAT structure. 

with root t, current node p (with neighbors pi, P2) Ps). and query object q. The 
dashed lines represent the boundaries between Voronoi cells of the first level of 
the SAT. The dotted lines depict the same for the second level. Assuming the 
current node is p, the algorithm presented above selects p among {p, ^1,^2,^3} 
as the closest object to q, even though the object 52 is closer. If we choose 
52 as the closest object, we further strengthen the pruning effect. However, 
this requires modifying the procedure for picking the closest object as follows: 
Select the closest object Oc from p's ancestor, including its neighbors and their 
associated neighbors, i.e., Oc G UOGA(P)(^(^) ^ i^})- Here, A{p) consists 
of the ancestors of p and its neighbors - in the figure, A{p) = {t, p, 5, u^ v}. 
Finally, the covering radius r^ of each node is used to further reduce search 
costs. We do not visit a node p if d{q^ p) > r^ + r. This expression is derived 
from the lower bound in Lemma 1.2 (pg. 31) with r/ = 0, r/̂  — r^ and from the 
fact that d{q^ 0) <r. The search algorithm is correct and returns all qualifying 
objects regardless of the strategy of selecting the closest object Oc. In other 
words, the strategy only influences the efficiency of pruning, see Equation 2.3. 

The tree is built in (!)(nlogn/loglogn) time, takes 0{n) space and its 
search complexity is e(n^-®(Viogiogn)^ jj^^ ^pj; jg designed as a static 
structure. More details can be found in [Navarro, 1999, Hjaltason and Samet, 
2003a, Navarro, 2002]. A dynamic version of SAT is presented in [Navarro and 
Reyes, 2002]. 

4.4 IVl-tree 
A dynamic structure called the Metric Tree (M-tree) is proposed in [Ciaccia 

et al., 1997b]. It can handle data files that change size dynamically, which 
becomes an advantage when insertions and deletions of objects are frequent. 
In contrast to other metric trees, the M-tree is built bottom-up by splitting its 
fixed-size nodes. Each node is constrained by sphere-like (ball) regions of the 
metric space. A leaf node entry contains an identification of the data object. 
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its feature value used as an argument for computing distances, and its distance 
from a routing object (pivot) that is kept in the parent node. Each internal node 
entry keeps a child node pointer, the covering radius of the ball region that 
bounds all objects indexed below, and its distance from the associated pivot. 
Obviously, the distance to the parent pivot has no meaning for the root. The 
pruning effect of search algorithms is achieved by using the covering radii and 
the distances from objects to their pivots in parent nodes. 

Dynamic properties in storage structures are highly desirable but typically 
have a negative effect on performance. Furthermore, the insertion algorithm of 
the M-tree is not deterministic, i.e., inserting objects in different order results 
in different trees. That is why the bulk-loading algorithm has been proposed 
in [Ciaccia and Patella, 1998]. Thebasicideaof this algorithm works as follows: 
Given a set of objects, the initial clustering produces k sets of relatively close 
objects. This is done by choosing k distant objects from the set and making 
them representative samples. The remaining objects get assigned to the nearest 
sample. Then, the bulk-loading algorithm is invoked for each of these k sets, 
resulting in an unbalanced tree. Special refinement steps are applied to make 
the tree balanced. 

The idea of M-trees was later extended by [Traina, Jr. et al., 2000b] in 
a metric tree structure called the Slim-tree. In order to get control over the 
overlap between metric regions, the fat-factor is defined and systematically 
used. The concept of fat-factor has been described in detail in Section 10.4 of 
Chapter 1. Slim-trees also use new insertion and split algorithms which result 
in improved performance. Slim-trees and many other variants of M-trees are 
described in Chapter 3. 

4.5 Similarity Hashing 
Similarity Hashing (SH), as proposed in [Gennaro et al., 2001] is built upon a 

completely different principle. It is a multi-tier hashing structure, consisting of 
search-separable sets on each tier, organized in buckets. The structure supports 
easy insertion and bounded search costs, because at most one bucket need 
to be accessed at each level for range queries up to a pre-defined value of the 
search radius. At the same time, the number of distance computations is always 
significantly reduced by the use of pre-computed distances obtained at insertion 
time. Buckets of static files can be arranged in such a way that I/O costs never 
exceed the cost of scanning a compressed sequential file. Experimental results 
demonstrate the performance of SH is superior to other available tree-based 
structures. 

The similarity hashing approach is exploited in the so-called the D-index 
structure [Dohnal et al., 2003a]. The D-index applies excluded middle parti-
tioning to hashed organizations. In contradistinction to VPF, navigation along 
the tree branches is unnecessary, and each storage bucket is directly accessible. 
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In principle, the concept of similarity hashing is not necessarily restricted to 
the excluded middle partitioning principle. [Dohnal et al., 2001] define another 
three p-split functions that are able to achieve the same effect, i.e., to produce sets 
separable up to a pre-defined distance radius p. Based on well-known geometric 
concepts, these methods are called the elliptic, hyperbolic, and pseudo-elliptic 
p-split functions. The second section of Chapter 3 deals with the D-Index and 
its variants suitable for similarity joins, and further extends the description of 
similarity hashing. 

5. Approximate Similarity Search 
Some applications can benefit from a very fast response to similarity queries 

even when it is obtained at the expense of precision in results. The fundamental 
concepts have already been discussed in Section 9 of Chapter 1. In the following, 
we survey some interesting approaches that have been proposed in the literature. 

First, we briefly cover certain approximation techniques that exploit space 
transformations. Then we provide a more extensive presentation of techniques 
which reduce the subset of data that must be examined. Most of these techniques 
were originally applied to vector spaces, but some can also be used in generic 
metric spaces. 

5.1 Exploiting Space Transformations 

Space transformations are convenient to use for approximate similarity search. 
This has already been mentioned in Section 9 of Chapter 1. Obviously the trans-
formations must satisfy the constraints described in Section 8 of Chapter 1. The 
general strategy is as follows: First, the original space is transformed. Then 
all search requests are executed in the projected space. Some false hits may be 
returned - but approximate similarity search algorithms do not apply the final 
cleansing phase which is necessary for obtaining exact results. 

An approach to dimensionality reduction specifically designed for approxi-
mate similarity searching has been proposed in [Egecioglu and Ferhatosman-
oglu, 2000]. The authors propose a dimensionality reduction technique that 
offers an easy way to compute the inner product between vectors approxi-
mately. Given a vector z = (^ i , . . . , ^d), let ipp{z) denote Lp norm to the p-th 
power. Then ^p{z) - (|| z \\p)P = [Lp{z,6)]P, where 0 - (0 , . . . ,0). The 
inner product of two vectors < x,y > can be approximated with the estimate 
of its m-power as < f, y y"^^ bii;i{x)^i{y) + ... + hm'il^rn{x)i)m{y). where 
m < d and b i , . . . , 6^ are parameters that should be tuned to obtain a good 
approximation. This technique saves disk space by storing the m-dimensional 
vector (^ i (x ) , . . . , ipmi^)) instead of the d-dimensional vector x, given that 
the approximate inner product can be computed using it. It also allows the 
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Euclidean distance || f — y ||2 to be also approximated, given that 

II x-y\\2= \/'02(^) + ip2{y) -2<x,y>. 

In [Ogras and Ferhatosmanoglu, 2003], this approximation method is further 
refined as follows: The cJ-dimensional space is divided into orthogonal sub-
spaces 5 i , . . . , 55 each having / dimensions, / = d/s. Let xPi be the projection 
of vector x in the subspace Si. The Euclidean distance between x and y can be 
computed exactly as jj x—y \\2=\\ SPi—yPi II2 + • • • + || ^Ps — yPg ||2- Ifthe 
individual jj xPi — yPi II2 are separately approximated using the approximate 
inner product technique, the approximation of the entire Euclidean distance 
which results is more precise. The authors note that the basic inner product 
approximation retains information on the magnitude of vectors only. A refined 
technique, also based on the space decomposition, is able to additionally retain 
information about the shape of approximated vectors, i.e., their direction. 

A further approach to space transformation is presented in [Weber and 
Böhm, 2000], based on so-called Vector Approximation files, VA-files. The 
VA-file [Weber et al., 1998] reduces the size of multi-dimensional vectors by 
quantizing the original data objects. It demands a nearest neighbor search per-
formed in two steps. Initially, the approximated vectors are scanned to identify 
candidate vectors. Then, in the second step, the candidate vectors are visited 
in order to find the actual nearest neighbors. The approximate search vari-
ant on this algorithm basically omits the second step of the exact search. A 
modification of the VA-files approach has been proposed in [Ferhatosmanoglu 
et al., 2000] in which the VA-file building procedure is improved by initially 
transforming the data into a more suitable domain using the Karhunen-Loeve 
transform, KLT. An approximate search algorithm based on the modified VA-
file approach is proposed in [Ferhatosmanoglu et al, 2001]. The performance 
improvement offered by techniques based on VA-files is significant. However, 
they are applicable to vector spaces only. 

A final approach which falls into this category is FastMap [Faloutsos and Lin, 
1995]. This technique is also suitable for generic metric spaces, provided we 
have k feature-extraction functions which transform the metric space into a k-
dimensional space. A similar technique which is, however, applicable directly 
to metric spaces is called MetricMap [Wang et al., 2000] and has already been 
discussed in Section 8.3 of Chapter 1. 

5.2 Approximate Nearest Neighbors with BBD Trees 
Suppose we have a query object q and a dataset X represented in a vector 

space whose distances are measured by Minkowski distance functions. Arya 
et al. [Arya et al., 1998] propose an approximate nearest neighbor algorithm 
which guarantees to find (1+e)-k-approximate-nearest-neighbors. Specifically, 
it retrieves k objects whose distances from the query are at most 1 + e times 
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Figure 2.13. Overview of the approximate nearest neighbors search algorithm using BBD trees. 

larger than that of the fc-th actual nearest neighbor of q. The time complexity 
of this algorithm is 0(/clogn), where n is the size of the dataset X. The 
parameter e is used to control the tradeoff between the efficiency and quality of 
the approximation. The higher the value of e, the higher the performance and 
error. 

As its underlying indexing structure, the algorithm uses the Balanced Box-
Decomposition tree (BBD) that is a variant of the Quad-tree [Samet, 1984] and 
is similar to other balanced structures based on box-decomposition [Bern et al., 
1993, Bespamyatnikh, 1995, Callahan and Kosaraju, 1995]. A property of the 
BBD tree is that regions associated with nodes which have the same parent do 
not overlap. Node regions are recursively repartitioned until they contain only 
one object, thus every region associated with a leaf node contains just a single 
object. The tree has 0{n) nodes and is built in 0{dn log n) time, where d is 
the number of dimensions of the vector space. 

The nearest neighbor algorithm associated with this data structure proceeds 
as follows: Given a query object q, the tree is traversed and the unique leaf node 
associated with the region containing the query is found in O(Iogn). At this 
point, a priority search is performed by enumerating leaf regions in increasing 
order of distance from the query object. The distance from an object o to a 
region is computed as the distance of a to the closest point that can be contained 
in the region. When a leaf region is visited, the distance of the associated object 
from q is measured and the k closest points seen so far are recorded. Let us call 
o^ the current A:-th closest point. The algorithm terminates when the distance 
from q to the region of current leaf is larger than d{q^ o^), that is, the current 
region cannot contain objects whose distance from the query object is shorter 
than that of o^. Since all remaining leaf regions are more distant from the 
current region, the k objects retrieved so far are the k nearest neighbors to q. 
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In contrast, the approximate nearest neighbor algorithm uses a stop condition 
to terminate the search prematurely. Specifically, the algorithm stops as soon 
as the distance to the current leaf region exceeds d{q^ o^)/(l + e). It is easy 
to show that under these circumstances, o^ is the (1 + e)-Ä;-th-approximate-
nearest-neighbor. To clarify the behavior of the precise versus approximate 
nearest neighbor search algorithms, look at Figure 2.13, in which data objects 
are represented as black spots and a query lNN{q) is posed. Each object is 
included in a rectangular region associated with a leaf node. Given a near-
est neighbor query lNN{q), every region is identified by a number assigned 
incrementally and based on the distance of the region to the query object q. 
Thus, the region containing q itself is assigned the value 1, while the region 
farthest away is labeled 10. The algorithm starts to search in Region 1 for a 
potential nearest object to q. The figure illustrates the situation in which Region 
3 has been accessed in the current stage of execution, and the object o^ found 
as the current closest object. The circumference is indicated as having radius 
d{q^ o"^). The precise algorithm will continue accessing regions that overlap 
the circumference and stop only after accessing Region 10, which contains 
the actual nearest neighbor. The approximate algorithm, by contrast, accesses 
only those regions which overlap the dotted circumference whose radius is 
d{q^ o^)/(l + e). Therefore, it terminates after accessing Region 8, missing 
the actual nearest neighbor. 

The priority search can be performed in O(mlogn), where m stands for 
the number of regions visited. The upper bound on m depends only on the 
dimensionality d, e of the space and the number of nearest neighbors k, for any 
Minkowski metric, and is defined as 2k + \1 + Gd/eY- Provided that d and 
€ are fixed, the algorithm finds the (1 + e)-fc-approximate-nearest-neighbors in 
O(fclogn) time. 

Note that upper bound on m is independent of the dataset size n. How-
ever, it depends exponentially on d, so this algorithm is feasible only in low-
dimensional vector spaces. 

5.3 Angle Property Technique 

Other two vector-space-only techniques for reducing the number of nodes 
accessed during nearest neighbor searches are proposed in [Pramanik et al., 
1999a, Pramanik et al., 1999b]. The chief novelty of these techniques lies in 
their exploitation of angles formed by objects contained in a ball region, the 
center of this region and a query object (see Figure 2.14). These techniques have 
been successfully applied to SS-trees [White and Jain, 1996]. However, they are 
generally applicable to any access method for vector spaces which partitions the 
data space, restricts groups of objects with ball regions, and organizes regions 
hierarchically. 
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Figure 2.14, An angle between objects contained in a ball region and a query object q with 
respect to the center p of the ball region. 

The heuristics employed in the search algorithm and proposed in [Pramanik 
et al., 1999a, Pramanik et al., 1999b] is justified by the following three properties 
of datasets in high-dimensional vector spaces: 

• As dimensionality rises, the points in a ball region become almost equidistant 
from the region's center. 

• With the increasing dimensionality, the radii of smaller child ball regions 
grow nearly as fast as the radius of the parent ball region, and thus their 
centers also tend to be close to each other. 

• Given a query point and a set of points covered by a ball region, the angle 
between the query point and any point in the ball region will fall into an 
interval of angles around 90 degrees. As dimensionality grows, this interval 
will decrease. 

Assuming regions are hierarchically structured, the algorithm uses an approx-
imate pruning condition to decide whether a region should be accessed or not. 
In [Pramanik et al., 1999a], it is suggested that a region be inspected if at least 
one of the following conditions holds: 

• The node corresponding to the region is an internal node. 

• The center of the region's parent is contained in the ball region defined by 
the query object and the current candidate set of nearest neighbors. 

• The region's center resides in the half of the parent's ball region closer to the 
query object, i.e., the angle between the center of the region and the query 
object with respect to the center of the parent's ball region is less than 90 
degrees. 
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Figure 2.15. If the query region does not intersect promising portions of the data region, the 
region is discarded. 

On reaching a leaf node, all objects of the leaf are examined and directly com-
pared to the query object. If an object is closer to the query object than the 
current candidate for the fc-th nearest neighbor, it is added to the response, 
superseding the k-th nearest neighbor. 

This algorithm is, however, unable to trade performance with quality of 
results. In [Pramanik et al., 1999b], the algorithm is further improved by intro-
ducing a threshold angle 6 to allow such a trade-off. Here is a brief sketch of 
how the improvement comes about: 

According to the properties listed above, the area where qualifying objects 
are most likely to be found is close to the border of the ball region, forming an 
angle of about 90 degrees with the query object. Assume 9 indicates the value 
of such an angle and the angle a is obtained by considering the query object 
q, the region's center p and the intersection of the query region and the region 
being examined (see Figure 2.15). If the angle a is greater than Ö, the region is 
accessed, otherwise it is excluded - this is the situation depicted in the figure. 
Notice that if 6 = 0 all regions overlapping the query region are accessed and 
the query response-set is determined exactly. 

5.4 Clustering for Indexing 
The Clindex technique (Clustering for indexing) performs approximate sim-

ilarity searches in high-dimensional vector spaces using an index structure sup-
ported by a clustering technique [Li et al., 2002]. The Clindex partitions the 
dataset into similar clusters, i.e., into clusters containing elements close to each 
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Other in the space. Each cluster is represented by a separate file and all files are 
sequentially stored on a disk. 

The Clindex technique uses a new algorithm for building clusters of objects. 
The algorithm starts by dividing each dimension of the d-dimensional vector 
space into 2^ segments, so every segment can be identified using an n-bit 
number. This process forms (2^)^ cells in the data space. The clustering 
algorithm aggregates these cells into clusters as follows: Each cell is associated 
with the number of objects it contains. The algorithm starts with the cells 
containing the largest number of objects and checks to see if they are adjacent 
to other clusters. If a cell is not adjacent to any cluster it is used as the seed 
for a new cluster. If a cell is adjacent to just one cluster, it is attached to that 
cluster. Finally, if the cell neighbors more than one cluster a special heuristics 
is applied to decide whether the clusters should be merged or to which cluster 
the cell belongs. This process is iterated until the remaining cells contain fewer 
objects than a specified threshold. Underfilled or empty cells are grouped in an 
outlier cluster and stored separately. 

Once the clusters are obtained, an indexing structure is built for speeding 
access to them. The index is a simple encoding scheme which maps an object 
to a cell and a cell to its corresponding cluster. The associations between clusters 
and disk files are also kept. 

Approximate similarity search is processed by first identifying the cluster 
to which the query object belongs. This is obtained by determining the cell 
which covers the query object and then identifying the corresponding cluster. 
If the query's cell is empty, a cluster cannot be obtained, so a cluster having the 
centroid closest to the query object is located. Once a cluster is identified, the 
file corresponding to it is sequentially searched, and objects qualifying for the 
query are returned. Of course, this search algorithm is approximate, because 
only one cluster is examined. In fact, it might happen that objects in non-
selected clusters might also qualify for the query, so these objects are falsely 
dismissed by the algorithm. 

5,5 Vector Quantization Index 
Another approach that uses a clustering technique to organize data and pro-

cess similarity queries approximately is the Vector Quantization Index (VQ-
index) [Tuncel et al., 2002]. The VQ-index is based on reducing both the 
dataset and the size of data objects at the same time. The basic idea is to orga-
nize the dataset into subsets which are not necessarily disjoint, and then reduce 
the size of data by compression. The approximate search algorithm first iden-
tifies the subset to be searched. Next, it goes through its compressed content 
and qualifying objects are reported. 

The dataset is grouped into subsets by exploiting a query history in the 
following way: Queries from the record of requests posed in the past are divided 
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into m clusters Ci {i = 1 , . . . , m) using the k-means algorithm [MacQueen, 
1967, Duda and Hart, 1973, Kaufman and Rousseeuw, 1990]. If the query 
history is too long, a sample is used instead. A subset Si of the entire dataset 
corresponding to each cluster Ci is defined as follows: 

Si= [j kNN{q), 
qeCi 

where kNN(q) obviously represents the k objects of the dataset nearest to q. 
Each subset Si contains elements of the dataset close to queries in the cluster 
Ci. Thus an element may belong to several different subsets. The overlap of 
subsets Si versus index performance can be tuned by the choice of m and k. 

The reduction in object size is obtained using the vector quantization tech-
nique [Gresho and Gray, 1992]. The objective of the vector quantization is 
to map an arbitrary vector from the original d-dimensional space into a repro-
duction vector. Reproduction vectors form a set of n representatives from the 
original space. The process of mapping can be decomposed into two modules -
an encoder Enc and a decoder Dec. The encoder transforms the original space 
R^ into a set { 1 , . . . , n} of numbers, thus each vector x G M^ gets assigned 
an integer Enc{x) — c {1 < c < n). The decoder, by contrast, maps the set 
{ 1 , . . . , n} to the set of n reproduction vectors, so-called code-vectors, which 
in fact, approximate all possible vectors from M ,̂ i.e., Dec{c) = x, x E R^. 
For each subset Si, a separate encoder Enci and decoder Deci is defined. Si 
is compressed by representing it with the set Sf^^ = {Enc^(x)|Vx e Si}. The 
decoder function Deci is used to obtain the reproduction vectors corresponding 
to the elements in Sf^^, i.e., the approximation of the original elements in Si. 

Here is an example: Having a fixed encoder Enc, several vectors can be 
mapped to a single number c. The best value for the corresponding code-
vector is one minimizing its average distance to all vectors mapped to c. In 
this way, a suitable decoder function can be obtained. An approximate nearest 
neighbors query is processed by locating the cluster Ci nearest the query. Next, 
by applying the decoder function Deci on 5f ̂ ,̂ the set Si is reconstructed and 
sequentially searched for k nearest neighbors. A certain level of imprecision is 
present at both stages. In the first stage, it cannot be guaranteed that the selected 
subset Si contains all objects which qualify for the given query. In the second 
stage, the vectors contained in the re-created set Si might have distances to the 
query object significantly different from the distances of the original vectors. 
The approximation quality of the vector quantization technique depends on the 
number n of code-vectors. In practice, the number n is much smaller than the 
total number of vectors. Initially, the set of code-vectors is very small and huge 
collisions are solved by replacing the code-vector in question with two new 
vectors, improving the quality of the quantization. However, the experiments 
presented in [Tuncel et al., 2002] reveal the VQ-index is very competitive and 
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outperforms other techniques based on linear quantization by factor of ten to 
twenty, while retaining the same precision in the response. 

5.6 Buoy Indexing 
Another approach to approximate nearest neighbor search which is based on 

clustering is presented in [Volmer, 2002]. In this proposal, the dataset is parti-
tioned into disjoint clusters bounded by ball regions. A cluster is represented 
by an element called a buoy. Clusters are gradually built by assigning objects 
to the cluster with the closest buoy. Radii of ball regions are defined as the 
distance between the buoy of a cluster and the furthest element in that cluster. 
This iterative optimization procedure attempts to find buoys of clusters so that 
radii of ball regions of these clusters are minimized. However, any other clus-
tering algorithm that organizes the space into disjoint clusters bounded by ball 
regions can be used with the approximate search algorithm described below. 

Imagine a dataset X with clusters C i , . . . , C^ C X, where each Ci is 
bounded by a ball region TZi = (Pi^n) and pi denotes the cluster's buoy. 
A precise fc-nearest neighbors search algorithm accesses the clusters in the 
order determined by the distance between the query and the cluster's center, 
starting with the closest. The qualifying objects from every cluster visited are 
determined. This process is repeated until no better objects can be found in 
remaining clusters. The stop condition can be formalized as 

stop if d{q, Ok ) + rj < d{q, pj), (2.4) 

where q is the query object of a kNN(q) query, o^ is the current k-th nearest 
neighbor, and pj and TJ form a ball region TZj = {Pjif^j) of ^ cluster to be 
accessed in the next step. 

The proposed approximation strategy is to reduce the amount of data accessed 
by limiting the number of accessed clusters, i.e., modifying the stop condition. 
A parameter / (0 < / < 1) is introduced which specifies the clusters to be 
accessed. Specifically, the approximate kNN search algorithm stops when 
either Equation 2.4 holds, or the ratio of clusters accessed exceeds / . This 
technique guarantees [/ • n] clusters will be accessed at a maximum, where n 
stands for the total number of clusters. 

The results of experiments reported in [Volmer, 2002] imply query execution 
may be about four times faster than a linear scan, with about 95% recall ratio. 
The advantage of this method is that it is not limited to vector spaces only but 
can be applied to metric spaces as well. 

5.7 Hierarchical Decomposition of IMetric Spaces 
There are other techniques beyond those mentioned for approximate similar-

ity searching which have been especially designed for metric spaces. In what 
follows, we briefly introduce the basics of these techniques. However, in view 
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of their prominent role in the field of approximate similarity search, they are 
more extensively discussed in Chapter 4. 

5.7.1 Relative Error Approximation 

A technique employing a user-defined parameter as an upper bound on ap-
proximation error is presented in [Zezula et al., 1998a, Amato, 2002]. In par-
ticular, the parameter limits the relative error on distances from the query object 
to objects in the approximate result-set with respect to the precise results. The 
proposed technique can be used for both approximate nearest neighbor and 
range searches in generic metric spaces. Assuming a dataset organized in a tree 
structure, the approximate similarity search algorithm decides which nodes of 
the tree can be pruned even if they overlap with the query region. At the same 
time, it guarantees the relative error obtained on distances does not exceed 
the specified threshold. On a similar basis, nearest neighbor queries retrieve 
(l+€)-/c-approximate-nearest-neighbors. Details of this technique are given in 
Section 1 of Chapter 4. 

5.7.2 Good Fraction Approximation 

The technique presented in [Zezula et al., 1998a, Amato, 2002] retrieves k 
approximate nearest neighbors of a query object by returning k objects that 
statistically belong to the set of / (Z > k) actual nearest neighbors of the query 
object. The value / is specified by the user as a fraction of the whole dataset. 
By using the overall distance distribution, the approximate similarity search 
algorithm stops when it determines that k objects currently retrieved belong to 
the specified fraction of objects nearest to the query. This method is discussed 
in detail in Section 2 of Chapter 4. 

5.7.3 Small Chance Improvement Approximation 

An approximate nearest neighbor search strategy proposed in [Zezula et al., 
1998a] and later refined in [Amato, 2002] is based upon the pragmatic observa-
tion that similarity search algorithms for tree structures are defined as iterative 
processes where the result-set is improved in each iteration until no further im-
provement can be made. As for fc-nearest neighbors queries, algorithms refine 
the response, which means that k objects retrieved in the current iteration will 
be nearer than those in the previous one. This can be explicitly measured by the 
distance between the current fc-th object and the query object. Such a distance 
decreases rapidly in first iterations and it gradually slows down and remains 
almost stable for several iterations before the similarity search algorithm stops. 
The approximate similarity search algorithm exploits this behavior and stops 
the search algorithm when the reduction of distance to the current fc-th object 
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slows down. A detailed description of this approach is given in Section 3 of 
Chapter 4. 

5.7.4 Proximity-Based Approximation 

A technique that uses a proximity measure to decide which tree nodes can 
be pruned even if their bounding regions overlap the query region is proposed 
in [Amato et al., 2003, Amato, 2002]. This has already been discussed in 
Section 10.2 of Chapter 1 from a theoretical point of view. When the proximity 
of a node's bounding region and the query region is small, the probability that 
qualifying objects will be found in their intersection is also small. A user-
specified parameter is employed as a threshold to decide whether a node should 
be accessed or not. If the proximity value is below the specified threshold, the 
node is not promising from a search point of view, and thus not accessed. This 
method is defined for both nearest neighbor and range queries and is discussed 
in detail in Section 4 of Chapter 4. 

5.7.5 PAC Nearest Neighbor Search 

A technique called Probably Approximately Correct (PAC) nearest neighbor 
search in metric spaces is proposed in [Ciaccia and Patella, 2000b]. The ap-
proach searches for a (l-i-e)-approximate-nearest-neighbor with a user-specified 
confidence interval. The proposed algorithm stops execution prematurely when 
the probability that the current approximate nearest neighbor is not the (1+e)-
approximate-nearest-neighbor falls below a user-defined threshold 6. Details 
of the approach are given in Section 5 of Chapter 4. 



PART II 

METRIC SEARCHING IN LARGE COLLECTIONS 
OF DATA 



Overview 

Database scalability is a topic which has been well-explored and much-
debated, but there are still no easy answers. There are several ways to achieve 
higher scalability of a database, but which of them to choose depends greatly 
upon the unique needs of individual users. 

Even creating a search index structure which scales to very large dimensions 
presents many challenges, and the task is becoming increasingly difficult as the 
amount of data grows. The most successful search engine capable of scaling all 
the way to the dimension of the Web is Google, but it can only manage text-like 
data. 

At the same time, the term large data is relative: what was large ten years ago 
is small today. In this part of the book, we assume that an index for processing 
large data stores and accesses indexed features on a secondary memory, that is 
on a disk. 

For this reason, we first concentrate on disk-oriented metric search indexes 
running on dedicated computers in Chapter 3. We provide enough detailed 
description of each of the structures to allow an understanding of their func-
tionality. More specifics can then be found by following the citations to the 
respective original papers. We also report results from practical experiments 
which illustrate the capabilities of such single-computer implementations. 

In Chapter 4, we report on the approximate similarity search. This enables 
scalability problems to be sidestepped by significantly increasing search per-
formance, but with a tradeoff of reduced precision in search results. 

Finally, we present the latest developments in distributed approaches to sim-
ilarity searching in Chapter 5. We show how recent trends in network architec-
tures, such as the GRID technology, the peer-to-peer communication paradigm 
and overlay networks can also be exploited to develop real scalable and dis-
tributed similarity search structures for arbitrary metric distance functions. 



Chapter 3 

CENTRALIZED INDEX STRUCTURES 

Most existing search structures have been designed to run on a single com-
puter. Let us call them centralized structures. They are built with different 
assumptions about type of distance function (discrete vs. continuous), form 
of query (range, nearest neighbor, etc.), and temporal properties (static or dy-
namic) of the data to be organized. Although many index structures have been 
proposed as main memory structures, there are several indexes which organize 
data using disk storage to allow the processing of a large volume of data. In 
what follows, we focus on two basic approaches which store objects in sec-
ondary memories. Specifically, we discuss tree-based structures and methods 
which employ hashing (i.e., the key-to-address transformation) principles. 

1. M-tree Family 
[Ciaccia et al., 1997b] have proposed a dynamic organization, called the 

M-tree, which can handle data files that vary dynamically in size, i.e., in cases 
when insertion and deletion of objects is frequent. In contrast to other met-
ric tree-based structures, the M-tree is built bottom-up and maintains the same 
length for all tree paths because the tree is balanced. This paradigm has become 
very popular and many researches have developed extensions of the M-tree stor-
age structure with a main objective of increasing search efficiency, sometimes 
conditioned by specific application requirements. We start with the original 
idea of the M-tree, then describe its most important extensions. 

1.1 The M-tree 
Most of the indexing methods described in Chapter 2 are either static, unbal-

anced, or both. They are not very suitable for dynamic environments where data 
is subject to permanent alteration, nor for large data repositories where disk-
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based techniques are necessary. The M-tree is, by nature, designed as a dynamic 
and balanced index structure capable of organizing data stored on a disk. By 
building the tree in a bottom-up fashion from its leaves to its root, the M-tree 
shares some similarities with R-trees [Guttman, 1984] and B-trees [Comer, 
1979]. This concept results in a balanced tree structure independent of the 
number of insertions or deletions and has a positive impact on query execution. 

In general, the M-tree behaves like the R-tree. All objects are stored in (or 
referenced from) leaf nodes while internal nodes keep pointers to nodes at the 
next level, together with additional information about their subtrees. Recall that 
R-trees store minimum bounding rectangles in non-leaf nodes that cover their 
subtrees. In general metric spaces, we cannot define such bounding rectangles 
because a coordinate system is lacking. Thus M-trees use an object called a 
pivot, and a covering radius, to form a bounding ball region. In the M-tree, 
pivots play a role similar to that in the GNAT access structure [Brin, 1995], but 
unlike in GNAT, all objects are stored in leaves. Because pre-selected objects 
are used, the same object may be present several times in the M-tree - once in 
a leaf node, and once or several times in internal nodes as a pivot. 

Each node in the M-tree consists of a specific number of entries, m. Two 
types of nodes are presented in Figure 3.1. An internal node entry is a tuple 

Internal Node: 

Leaf Node: 

Wi 

IK 

jr; |d(pi,p') [ptr;] 

^ 

Idfa^oOlf^rfdC^ 

P2|r2 

~^" 

d(P2,pO|ptr2j-
^ ^ ^ 

'loJdCc^^o»)! 

[P̂  r:.|d(R.pO |p t r J 
^ 

Figure 3.1. Graphical representation of the internal and leaf nodes of the M-tree. 

(p, r^, d{p,pP)jptr), where p is a pivot and r^ is the corresponding covering 
radius around p. The parent pivot of p is denoted as pP and d{p^pP) is the 
distance from p to the parent pivot. As we shall soon see, storing distances to 
parent objects enhances the pruning effect of search processes. Finally, ptr is a 
pointer to a child node. All objects o in the subtree rooted through ptr are within 
the distance r^ fromp, i.e., d(o, p) < r^. By analogy, a tuple (o, d{o^ cP)) forms 
one entry of a leaf node, where o is a database object (or its unique identifier) 
and (i(o, cP) is the distance between o and its parent object, i.e., the pivot in the 
parent node. 

Figure 3.2 depicts an M-tree with three levels, organizing a set of objects 
Ol , . . . , Oil. Observe that some covering radii are not necessarily minimum 
values for their corresponding subtrees. Look, e.g., at the root node, where nei-
ther the covering radius for object oi nor that for 02 is optimal. (The minimum 
radii are represented by dotted circles.) Obviously, using minimum values of 
covering radii would reduce the overlap of individual bounding ball regions, 
resulting in a more efficient search. For example, the overlapping balls of the 
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Figure 3.2. Example of an M-tree consisting of three levels. Above, a 2-D representation of 
partitioning. Pivots are denoted by crosses and the circles around pivots correspond to values of 
covering radii. The dotted circles represent the minimum values of covering radii. 

root node in Figure 3.2 become disjoint when the minimum covering radii are 
applied. The original M-tree does not consider such optimization, but [Ciaccia 
and Patella, 1998] have proposed a bulk-load algorithm for building the tree 
which creates a structure that sets the covering radii to their minimum values. 
More details are reported in Section 1.2. 

The M-tree is a dynamic structure, thus we can build the tree gradually as 
new data objects come in. The insertion algorithm looks for the best leaf node 
in which to insert a new object ON and stores the object there if enough space 
is available. The heuristics for finding the most suitable leaf node proceeds 
as follows: The algorithm descends down through a subtree for which no en-
largement of the covering radius r^ is needed, i.e., d{oNjP) < r^- If multiple 
subtrees exist with this property, the one for which object ON is closest to its 
pivot is chosen. Such a heuristics supports the creation of compact subtrees and 
tries to minimize covering radii. Figure 3.2 depicts a situation in which object 
Oil could be inserted into the subtrees around pivots 07 and 02. Because on 
is closer to 07 than to the pivot 02, it is inserted into the subtree of 07. If there 
is no pivot for which zero enlargement is needed, the algorithm's choice is to 
minimize the increase of the covering radius. In this way, we descend through 
the tree until we come to a leaf node where the new object is inserted. During 
the tree traversal phase, the covering radii of all affected nodes are adjusted. 
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Insertion into a leaf may cause the node to overflow. The overflow of a 
node N is resolved by allocating a new node A '̂ at the same level and by 
redistributing the m + 1 entries between the node subject to overflow and the 
one newly created. This node split requires two new pivots to be selected and 
the corresponding covering radii adjusted to reflect the current membership of 
the two new nodes. Naturally, the overflow may propagate towards the root 
node and, if the root splits, a new root is created and the tree grows up one level. 
A number of alternative heuristics for splitting nodes is considered in [Ciaccia 
et al., 1997b]. Through experimental evaluation, a strategy called the minimum 
maximal radius mM_RAD_2 has been found to be the most efficient. This strategy 
optimizes the selection of new pivots so that the corresponding covering radii are 
as small as possible. Specifically, two objects PNIPN' are used as new pivots for 
nodes AT, N' if the maximum (i.e., the larger, max(r^, ^AT')) of corresponding 
radii is minimum. This process reduces overlap within node regions. 

Starting at the root, the range search algorithm for R{q^ r) traverses the tree 
in a depth-first manner. During the search, all the stored distances to parent 
objects are brought into play. Assuming the current node N is an internal node, 
we consider aU non-empty entries (p, r*̂ , d{p^ pP)^ptr) of N as follows: 

• If \d{qjpP) — d{p^pP)\ — r^ > r, the subtree pointed to by ptr need not 
be visited and the entry is pruned. This pruning criterion is based on the 
fact that the expression \d{q^pP) — d(p,p^)| — r^ forms the lower bound 
on the distance d{q^ o), where o is any object in the subtree ptr. Thus, if 
the lower bound is greater than the query radius r, the subtree need not be 
visited because no object in the subtree can qualify the range query. 

• If \d{q^ pP) — d{p^ pP) \—r^<r holds, we cannot avoid computing the dis-
tance d(g, p). Having the value of d{q^ p), we can still prune some branches 
via the criterion: d{q^p) — r^ > r. This pruning criterion is a direct con-
sequence of the lower bound in Lemma 1.2 in Chapter 1 with substitutions 
ri = 0 and rh — r^ (i.e., the lower and upper bounds on the distance d{p^ a)). 

• All non-pruned entries are searched recursively. 

Leaf nodes are similarly processed. Each entry (o, d{o^ oP)) is examined 
using the pruning condition \d{q^ cP) — d{o^ oP)\ > r. If it holds, the entry can 
be safely ignored. This pruning criterion is the lower bound in Lemma 1.1 in 
Chapter 1. If the entry cannot be discarded, the distance d{q^ o) is evaluated 
and the object o is reported if d{q^ o) < r. Note that in all three steps where 
pruning criteria hold, we discard some entries without computing distances to 
the corresponding objects. In this way, the search process is made faster and 
more efficient. 

The algorithm for /c-nearest neighbors queries is based on the range search 
algorithm, but instead of the query radius r the distance to the k-th current 
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nearest neighbor is used - for details see [Ciaccia et al., 1997b]. The general 
idea of an algorithm for kNN queries based on range queries is presented in 
Section 6.1 of Chapter 1. 

From a theoretical point of view, the space complexity of the M-tree involves 
0{n+mmN) distances, where n is the number of distances stored in leaf nodes, 
mjsf is the number of internal nodes, and each node has a capacity of m entries. 
The construction complexity claimed is 0{nm'^ log^ n) distance computations. 
Search complexity was not analyzed in [Ciaccia et al., 1997b], but in [Ciaccia 
et al., 1998a] an analytic cost model for M-trees is presented. 

In the following, we present the most important extensions of the original 
ideas applied in the M-tree. 

1.2 Bulk-Loading Algorithm of IVl-tree 
[Ciaccia and Patella, 1998] have proposed what was likely the first extension 

of the M-tree. They defined the so-called bulk-loading algorithm for insertion. 
Their technique is based on optimizations of the tree-building process, resulting 
in a non-trivial performance boost. But the procedure requires the entire indexed 
dataset to be given in advance to analyze the distribution of data objects and 
preprocess them so that the resulting M-tree is efficiently built. 

Roughly speaking, the bulk-loading algorithm performs a clustering of n 
data objects in X = {o i , . . . , o^} and returns the M-tree. Given the database 
X, we randomly select / objects p i , . . . , p/ where / is usually set to m, i.e., to the 
number of entries per node in the M-tree. The selected objects - call them pivots 
- form the sample set P. All objects of X are assigned to the nearest pivot, 
thus producing / subsets P i , . . . , P/. Those subsets are used to recursively call 
the bulk-loading algorithm. In this fashion, we obtain / subtrees T i , . . . , T/. By 
the recursion, we acquire leaf nodes with maximally / objects. Finally, the root 
node is created, all subtrees are connected to it, and the final tree T is obtained. 
In other words, the bulk-loading algorithm is invoked several times on the set 
of pivots P and the supertree Tgup is built. Each subtree Ti is appended to the 
leaf of Tsup corresponding to pivot pi and the final T is completed. 

The authors also discuss the problem of choosing the sample set P , because 
a pivot picked in a sparse region would produce a shallow subtree - when most 
objects are far away from a pivot, they get assigned to other pivots. If, on the 
other hand, the region is dense, any pivot selected will lead to a deep subtree, 
since many objects are closer to it than to the other pivots. 

Figure 3.3 gives an example of objects in 2-dimensional space and the corre-
sponding tree produced by the bulk-loading algorithm with k = 3. In the first 
step, the algorithm picks three objects 01,02,03 as pivots at random and creates 
corresponding clusters. Clusters containing more than k objects are recursively 
processed and form subtrees. For example, in the cluster around oi, three new 
pivots are selected (namely oi, 04,05), where the pivot oi is inherited from the 
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Figure 3.3. An example of the first phase of bulk-loading algorithm with the resulting tree. 

Upper level. Note the resulting tree confirms the above theory about sparse and 
dense regions: the individual subtrees are not of equal depth. Objects 03,03,03 
are identical because pivots are inherited from upper levels. 

The bulk-loading proceeds to the next phase if subtrees resulting from the 
first stage are of different heights, i.e., the tree is unbalanced. The following 
two techniques are applied to resolve such a problem: 

• Underfilled nodes are reassigned to other subtrees and corresponding pivots 
deleted from the set P. 

• Deeper subtrees are split into shallower ones and the newly obtained roots 
inserted into P to replace the original root nodes of deeper subtrees. 

An underfilled node is one which contains fewer items than the minimum oc-
cupation, minimum occupation being the second parameter of the bulk-loading 
algorithm. 

In the example shown in Figure 3.3, the first heuristics detects underfilled 
nodes under objects o[ and 09. These objects are deleted and reassigned to 
their closest pivots 04 or og, respectively. The latter technique reveals different 
depths in tree branches. The subtrees rooted in nodes oi and 03 are taller, 
thus they are split into new subtrees rooted in 04,05,03, OS^OQ, and 07. More 
specifically, the pivots oi and 03 are replaced with 04,05,03, OS^OQ.^ 07 in the 
set P. Finally, the bulk-loading algorithm creates a supertree over the set P 
(see Figure 3.4). Note that the objects 04,03,02 are selected as pivots in the 
supertree. 

Experiments by [Ciaccia and Patella, 1998] reveal that the bulk-loading algo-
rithm builds the M-tree with fewer distance computations than does the standard 
M-tree insertion procedure. I/O costs are also much lower with the bulk-loading 
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Figure 3.4. The example after the second phase of the bulk-loading algorithm. 

procedure, mainly due to the massive use of internal memory. As for search effi-
ciency, the M-tree built using the bulk-loading algorithm provides only slightly 
better performance than an M-tree built with traditional insertion. 

In the following, we describe an optimization technique that further speeds 
the building process. The merit of this method, also proposed by [Ciaccia 
and Patella, 1998], lies in the way it uses pre-computed distances according to 
Lemma 1.1 in Chapter 1. After the initial phase of the bulk-loading algorithm, 
we have a set of pivots P and corresponding subsets P i , . . . , P/.. The algorithm 
is applied during the recursive call on each subset. Assume that the algorithm 
processes the subset Pi. At this point, we know all distances between the pivot 
pi and objects o G Pi, because these distances have been computed during 
the initial clustering. In the next step, a new set of pivots is chosen and the 
other objects must be clustered, i.e., we have to find the nearest pivot for each 
o G Pi. Suppose that pi^N is the nearest pivot for the object oi obtained so far, 
and the distance from Oi to another pivot pij has to be evaluated. Since we 
know the distances d(pi, Oi) and d{pi^pij) (from the previous clustering), we 
can establish a lower bound on the distance d{pij, ô ) by following Lemma 1.1 
(pg. 29): 

\d{pi,Oi) - d{pi,pij)\ < d{pij,Oi). 

If the distance to the current nearest pivot d{pi^Ni oi) is less than our lower 
bound, we can safely leave off computing d{pij, Oi), because in the worst case, 
it will equal d{pi^N^ oi) and cannot be less. This optimization cuts the number 
of distance computations in the bulk-loading algorithm by 11%. By exploiting 
pre-computed distances to multiple pivots, tests conducted by the same authors 
on clustered datasets showed an increased savings ranging up to 70%, with a 
mean value of 20%. 
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1.3 Multi-Way Insertion Algorithm 
Another extension to M-tree insertion algorithms with the objective of build-

ing more compact trees was proposed in [Skopal et al., 2003]. The difference 
between the bulk-loading procedure and this approach is in their respective 
dynamic capabilities: The bulk-loading algorithm assumes static data collec-
tions while the multi-way insertion algorithm is able to deal with dynamically 
changing data and in this way is closer to the original insertion algorithm of the 
M-tree. 

The original insertion algorithm of the M-tree can be seen as a single-path or 
"single-way" insertion, because it traverses the tree along exactly one branch. 
In this way, exactly h nodes are accessed, where h is the height of the tree. 
The single-way insertion heuristics is designed to keep building costs as low 
as possible, and within this limitation tries to select a leaf node for which the 
increase in covering radii is zero or minimum. However, [Skopal et al., 2003] 
point out that the technique behaves very locally and the leaf selected may not 
be the most convenient. Their priority is to choose the most convenient leaf 
node in every situation and they propose procedure we now describe. 

Before inserting a new object ON, a point query R(ON^ 0) is issued. For all 
leaves visited, distances between ON and the leaf's pivots are computed. The 
leaf node whose pivot is the closest to ON is then chosen to store the new object. 
If no such leaf is found, single-way insertion is employed. This happens when 
no leaf node covers the area of ON and the search algorithm terminates empty 
before reaching a leaf. The heuristics behaves more globally because it inspects 
more nodes, naturally increasing I/O costs. 

Comparison experiments testing the single and multi-way insertion algo-
rithms by [Skopal et al., 2003] show multi-way insertion requires about 25% 
more disk accesses than the single-way algorithm and nearly 40% more accesses 
than the bulk-loading algorithm. These higher I/O costs also lead to higher CPU 
costs as measured by distance computations. Because multi-way insertion de-
scends the tree using multiple branches, more pivots are compared against the 
inserted object, and thus more distance computations must be performed. As 
for query performance, trees built by multi-way insertion execute queries with 
15% fewer disk accesses on average. The number of distance computations 
is nearly the same for range queries, but multi-way insertion produces a tree 
needing about 10% fewer distance computations for nearest neighbor queries. 

In summary, multi-way insertion supports higher utilization of nodes than 
single-way insertion, thus producing more compact trees with fewer nodes. The 
multi-way insertion algorithm is advantageous in applications where building 
costs are not very important in comparison with query execution performance. 
Since the savings are more significant for I/O than CPU costs, inexpensive 
metric functions are preferable. 
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1.4 The Slim Tree 
The objective of the Slim tree, introduced in [Traina, Jr. et al., 2000b], is to 

reduce overlaps between node regions. In principle, the Slim tree is an extension 
of the M-tree that speeds up insertion and node splitting and at the same time 
it improves storage utilization. In particular, this technique is based on a new 
node-splitting algorithm and a special post-processing procedure which helps 
make the resulting trees more compact. 

The structure of the S lim tree is the same as that of the M-tree, but the insertion 
algorithm is modified as follows: Starting at the root node, the algorithm tries 
to locate a suitable node to cover the incoming object. If none is found, the 
node whose pivot is nearest the new object is selected. This is the first point of 
difference from the M-tree which, in this situation, would select the node whose 
covering radius requires the smallest expansion, not necessarily the nearest 
pivot. When several nodes qualify, the Slim tree selects the one which occupies 
the minimum space. This tie-breaker technique is a second difference from 
the M-tree - M-trees choose the node whose pivot is closest to the new object. 
This modified insertion strategy tends to fill insufficiently occupied nodes first, 
and in this way defers splitting, boosts node utilization, and cuts the number of 
tree nodes needed to organize a dataset. Based on the same mM_RAD_2 splitting 
policy, an experimental comparison of M-trees and Slim trees confirms this 
hypothesis and the results exhibit lower I/O costs for Slim trees, while keeping 
the number of distance computations nearly the same for both the M-tree and 
the Slim tree. This observation applies not only to the tree building procedure 
but also to query execution. 

The Slim tree also concentrates on reducing the relatively high building 
costs of M-trees, due mainly to their node-splitting strategy - the complexity 
of the mM_RAD_2 strategy is 0{n^), using 0{n?) distance computations. The 
split algorithm presented in the Slim tree is based on constructing a minimum 
spanning tree (MST) [Kruskal, 1956], which has been successfully used for 
clustering. This algorithm needs 0{in?) distance computations and the total 
execution time is 0{n^ logn). The MST splitting algorithm assumes a fully 
connected graph consisting of n objects (acting as vertices) and n(n — 1) edges, 
where each edge is given a weight equal to the distance between a pair of 
connected objects. The algorithm proceeds according to the following steps: 

1 Build the minimum spanning tree on the full graph; 

2 Delete the longest edge; 

3 The resulting two subgraphs determine the content of the new nodes; 

4 Choose as a pivot for each group the object whose distance to all the other 
objects in the group is the shortest. 
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The disadvantage of this procedure is that it does not guarantee the minimal 
occupation of nodes, i.e., the split can be highly unbalanced. To obtain a more 
balanced split, the authors suggest choosing the most appropriate edge from 
among the longer edges in the MST. If no such edge is found, e.g., in the case 
of a star-shaped dataset, the unbalanced split is accepted and the longest edge 
is removed. 

(a) (b) (c) 

Figure 3.5. An example of a node split using the MST splitting algorithm. 

Figure 3.5 shows the use of the MST splitting algorithm. In (a), a node 
that is to be split is presented in the 2-D vector space. The newly-arrived object 
causing the node to split is denoted by ô r and the pivot of this node is the object 
Ol. The MST is built in (b) and the longest edge connecting two components 
is represented by the dashed line. Finally, in (c), we show two resulting nodes 
and their new pivots 02 and OQ. 

Experiments in [Traina, Jr. et al., 2000b] compare the efficiency of the 
new MST splitting strategy with the original mM_RAD_2 strategy. The results 
show that tree building using the MST algorithm is at least forty times faster 
than the original, while query execution time remains practically the same. 
In this respect, the MST strategy is preferable, especially in highly dynamic 
environments requiring many splitting operations. 

1.4.1 Slim-Down Algorithm 

The second major contribution of [Traina, Jr. et al., 2000b] is the definition 
of the Slim-down algorithm, which is applied in the post-processing phase. 
This method attempts to minimize the overlap of balls of sibling nodes and, 
in the established terminology, tries to decrease the value of iht fat-factor (see 
Section 10.4, Chapter 1) of the tree. The following example explains the idea. 
Given a point query (i.e., the range query with r = 0), the search procedure 
gradually enters all nodes whose regions contain the query object. By reducing 
the overlap between them (making the balls smaller), we decrease the probabil-
ity that a point query hits several nodes at the same level. See Figure 3.6a, where 
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we are searching for object 03. In this example, the search must enter both the 
nodes, because 03 is contained in their regions. If the nodes are grouped as seen 
in Figure 3.6b, the search algorithm looking for 03 will visit only one node. 

Figure 3.6. A Slim tree before slimming down in (a) and after in (b). The covering radii of 
nodes are denoted with arrows. 

The Slim-down algorithm can be characterized using the following three 
steps (see Figure 3.6 for reference): 

1 For each node AT at a given level of the tree, locate the object furthest from 
the node's pivot. In the figure, this applies to the object 03 vis ä vis pivot 02. 

2 Search for a sibling node M that also covers 03. If such a node M exists 
and if it is not fully occupied, move 03 from node N to node M and update 
the covering radius of A .̂ 

3 Steps 1 and 2 are applied to all nodes at the given level. If a single object is 
relocated after a complete circuit using these two steps, the entire algorithm 
is executed again. 

By applying this algorithm to the tree in Figure 3.6, we move the object 03 from 
node N into node M. Since 03 is the only object in N at distance d{os^ 02) from 
the pivot 02, the covering radius of N shrinks, and no other region is enlarged. 
As a result of the radius reduction, the object 03 passes out of the intersection 
of the covering regions of nodes N and M and the search for 03 no longer 
visits both nodes. From a terminological point of view, we have decreased the 
fat-factor of the tree. 

As a result of the Slim-down algorithm, some nodes can become poorly 
occupied or even empty. The authors suggest objects in nearly empty nodes be 
reinserted into the tree and their nodes deleted. Experiments confirm that this 
strategy is effective and leads to more compact trees. Though the algorithm 
was only applied to the leaves of the tree in [Traina, Jr. et al., 2000b], it can 
also be used in principle on other levels. The idea of dynamic object relocation 
can also be applied to defer splitting. During the insertion of an object into a 
full node, a simple relocation of the furthest object from this node should be 
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tried instead of executing a node split. This technique has already been studied 
in the area of spatial access methods (e.g. R-trees in [Garcia et al., 1998]). 

[Traina, Jr. et al., 2002] provide a thoroughgoing discussion of the properties 
of the Slim-down algorithm and describe a possible deadlock in the algorithm. 
In Step 3, we repeat the procedure when a single object is moved from one 
node to another. Figure 3.7 depicts a situation in which the algorithm gets 
stuck in an infinite loop. After the first full round, the objects 04,05, OQ move 
to their neighboring nodes, as indicated by the dashed lines. Because of this 
reorganization, the algorithm restarts and the same objects are reassigned back 
to the original nodes (see the solid lines). In this way, the algorithm mingles 
the three objects forever. To avoid such a situation, the authors suggest limiting 
the number of times the algorithm is called to a certain value. 

Figure 3.7. A cyclic move of object during the Slim-down algorithm elaboration. The covering 
radii cannot be reduced. 

The advantage of the Slim-down algorithm is that it reduces the overlap 
between node regions, which helps improve total I/O costs. Trials on several 
datasets show the algorithm decreases the number of disk accesses by at least 
10%. Such performance improvements were observed not only for the MST 
split strategy, but also for the original mM_RAD_2 strategy. 

1.4.2 Generalized Slim-Down Algorithm 

[Skopal et al., 2003] have modified the original Slim-down algorithm to 
run also on the non-leaf nodes of a tree. It starts from leaf nodes, where the 
algorithm follows the original Slim-down post-processing steps. Then index 
levels of the tree are considered consecutively, terminating in the root. For each 
pivot p in the non-leaf node A ,̂ the range query Ä(p, r^) is issued, where r^ is 
the covering radius attached with respect to the pivot p. The query determines 
a set of nodes whose regions entirely contain the query region. From this set, 
the algorithm chooses the node M whose parent pivot pivot{M) is the closest 
to the currently inspected (query) pivot p. If the inspected pivot p is closer to 
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Figure 3.8. (a) An M-tree before slim-down optimization, (b) the resulting tree after applying 
the general slim-down. 

pivot(M) than to its original parent pivot pivot{N), it is moved from node Â  
to node M. If the entry containing pivot p determines the minimum bounding 
region (ball) of TV, the covering radius of N is updated, i.e., reduced. This 
sequence of steps is repeated at a given level until an entry is reallocated. Then, 
the algorithm continues in the next upper level. 

The generalized Slim-down algorithm reduces the covering radii of internal 
nodes as well as leaf nodes. The number of nodes per level is preserved, because 
node overflow (underflow) is not considered. 

Figure 3.8a depicts a hypothetical M-tree structure and the corresponding 
2-D representation of the indexed space. The root node contains two pivots 
for nodes M and N. Node M navigates to leaf nodes represented by pivots 
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Ol and 04. The remaining leaves are rooted in node N under pivots 02 and 
03. Observe the large overlap between regions of nodes M and N, which 
furthermore completely covers the regions around pivots 03 and 04. The fact 
that eight of ten objects occur in the overlap results in a fat-factor of 0.8. After 
applying the generalized slim-down algorithm, the tree significantly slims down 
and the overlap of nodes M and N contains only two objects. The algorithm first 
optimizes the leaf level and oio, the object furthest from pivot 03, is reallocated 
to the node around oi. The same applies to the object os- Note that the covering 
radius of node around oi has not been expanded and the original home nodes 
of 08 and oio have been able to shrink their covering radii because their most 
distant objects have been excised. Next, the upper level is reorganized and 
nodes around 03 and 04 swap owners, leading to smaller covering radii for 
nodes M and N. 

The above example demonstrates very desirable behavior on the part of the 
generalized slim-down algorithm. Its validity has been confirmed by experi-
ments. By applying this post-processing algorithm, tree building costs in terms 
of disk accesses grow by about three times compared to the original M-tree 
building procedure, and more than three times vis ä vis the bulk-loading al-
gorithm. Building costs in terms of distance evaluations were not provided 
by the authors. Even though tree building costs increase, the search for range 
queries is almost twice as fast, and about 3.5 times faster for nearest neighbor 
queries. Such improvements were observed for both disk accesses and distance 
computations. 

In summary, the generalized slim-down post-processing technique is mainly 
suitable for applications where insertions are not so frequent, and where the 
search is the prevalent operation. This approach produces trees which are 
tighter and more efficient than the slim-down algorithm by [Traina, Jr. et al., 
2002]. 

1.5 Pivoting M-tree 
Very recently, [Skopal, 2004] has proposed an M-tree variant which combines 

the M-tree with principles of the LAESA approach (see Sections 3 and 4 of 
Chapter 2). In contrast to previously described extensions which minimize the 
volume covered by regions around pivots, the aim of this technique is to bound 
covering ball regions more tightly by additionally defining ring regions. A ring 
metric region is defined similarly to a ball region but uses two radii Vmin^ ^max 
and a pivot p. Such a ring region is restricted only to objects o within both radii. 
I.e. , TTTim S ^[P-iP) S '^max' 

The classic M-tree uses a set of pivots for clustering the data space into ball 
regions and navigating the tree during search. In the PM-tree (Pivoting M-tree), 
another set P of pivots (|P| = Up) is selected and a matrix of pre-computed 
distances is defined. The matrix is divided into one-dimensional arrays related 
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to individual node entries. Specifically, a leaf node entry is defined as a tuple 
(o, d{o^ cP)^ PD). The additional member of the tuple PD stands for an array 
of ripd pivot distances, where the Z-th distance is PD[l] = d{pi^ o). Intuitively, 
we store distances between database objects o and pivots pi G P. The value of 
Upd is a parameter of the PM-tree access structure and must satisfy Upd ^ p̂» 
because we simply do not have additional pivots. The entry of an internal node 
is likewise modified as (p, r^^ d{p^ pP)^ ptr^ HR). However, HR is not an array 
of distances but an array of rihr intervals defining ring regions. The value of 
Uhr is the next parameter of the structure and naturally n^r ^ 'rip holds. The 
l-th ring region HR[l] is defined as follows: 

HR[l].min = min{{d{ojjPi)\\/oj G ptr})^ 

HR[l].max = max{{d{oj^pi)\ioj G ptr}). 

Each ring region stored in HR contains all objects indexed in the subtree deter-
mined by ptr. The intersection of all ring regions and the ball region defined 
by the covering radius forms a new metric region that bounds all the indexed 
objects. As a result, the PM-tree's regions are smaller than an M-tree's, a nec-
essary condition for improving the search efficiency. Figure 3.9 illustrates the 
differences between the M-tree and the PM-tree. Observe that the range query 
posed no longer collides with the node's region in the PM-tree, thus the node 
is not visited during the search. 

' - ^ . 

(a) 

Figure 3.9. (a) A covering region of a node in an M-tree, (b) the same region trimmed by two 
ring regions in PM-tree. 

Extending the structure using additional pivots requires modifying the in-
sertion and search algorithms. During the insertion of a new object o^, the 
HR array of each internal entry along the insertion path must be updated with 
values d(oN^pi) for all pivots pul < rihr- When the new object is inserted 
into a leaf, a new leaf entry is created and the respective PD array is filled in 
with the values d{o]sf^pi)^\/l < Upd- In this way, several levels of the tree are 
updated using distances d^ojsi^pi). However this does not necessarily require 
reevaluation of these distances in descending levels, because, once computed, 
distances are remembered for later use. 
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This modification of the insertion procedure increases computational costs 
by max{nkr^ n^d) distance function evaluations. Naturally, the node splitting 
also involves some maintenance of the corresponding HR or PD arrays. In 
the case of a leaf split, two new HR arrays of intervals are created by using all 
leaf entries of the corresponding leaf nodes - the HR\l] ,min for the left node is 
simply the minimum of PD [/] values of all objects in the left node. HR\f\ .max 
is determined analogously, and the HR array for the right node is built. Splitting 
a leaf node can get relatively expensive when rihr » '^pd^ which means that 
we use more pivots in internal nodes than leaf nodes. This results in additional 
distance computations when constructing HR arrays for leaf nodes, because 
we do not remember all the necessary PD[l] values (/ > Upd)^ so they must be 
evaluated again. Such obstacles are not connected with the splitting of internal 
nodes because all internal nodes use the same value of rthr- After the split of 
an internal node, the HR arrays of the two resulting nodes are created simply 
by the union over all HR arrays of respective entries. 

To fully exploit the additional information stored in the PM-tree, the search 
algorithms must also be modified. Before processing any similarity query, 
distances d[q^ pi) for all pivots pi such that / < maxirthr-, ripd) are determined. 
Then the search procedure is started and the tree is traversed by considering 
nodes whose metric regions coincide with the query region. The relevant entries 
are determined not only by the standard ball-region test used in M-trees (see 
Equation 3.1) but also by a new ring-region check in Equation 3.2. In particular, 
the internal entry {p^r^^d{p^pP)^ptr^HR) is considered to be relevant to a 
range query R{q^ r) if both the following expressions hold: 

d ( g , p ) < r + r^ (3.1) 

/\{d{q,pi) -r < HR[l].max A d{q,pi) + r> HR[l],min). (3.2) 
1=1 

For a leaf node entry, the standard covering radius test takes the form: 

\{\d{q,pi)-PD[l]\<r). 
1=1 

Note that none of the previous checks employ any additional distance evalu-
ations and only previously computed distances are used. Refer to Figure 3.9 
again, where an example range query is given. In the M-tree, the standard 
covering radius check (see Equation 3.1) passes and the entry's subtree must be 
visited. In the PM-tree, however, the additional ring-region checks prevent the 
algorithm from entering the subtree. The ring region defined by pivot pi cannot 
eliminate the entry from processing but the second ring around p2 does not 
intersect the query region. As a consequence, we regard this entry as irrelevant 
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to the query. In other words, the query cannot find any qualifying object in the 
entry's subtree, because it does not intersect the filled area in Figure 3.9b. 

The ring-region check above must be incorporated into original search proce-
dures for range and nearest neighbor queries. For range queries, the adjustment 
is straightforward - the new condition is combined with the original ball-region 
check whenever applied. However, the search algorithm for nearest neighbor 
queries must be completely redesigned, due to the use of a priority queue. The 
specific modification to the kNN algorithm is described in [Skopal et al., 2005]. 

The authors compared their PM-tree access structure and the original M-tree 
in a number of experimental trials. They studied performance for various values 
of PM-tree parameters Uhr and n-pd- Considering the number of disk accesses, 
the most economical PM-tree structure uses Upd = 0, which is quite intu-
itive because the space needed to store HR arrays of internal nodes is not so 
overwhelming compared to the filtering effectiveness gained. In this way, the 
PM-tree is able to save from 15% to 35% of disk accesses with respect to the 
M-tree. The PM-tree with ripd = n/i^/4 needs about the same number of disk 
accesses as the M-tree. Trees with higher values of ripd need more leaf nodes 
to store the objects (because they must save the PD arrays), thus the search is 
more expensive. 

In contrast to the number of disk accesses, the increased number of dis-
tances stored in PD arrays positively impacts performance in terms of distance 
computations. With ripd = rihr/4:, the PM-tree is up to 10 times faster than 
the M-tree. The most promising setting for disk costs is also more efficient 
than the M-tree with regard to distance computations, however improvements 
are marginal, averaging around 30%. A rule-of-thumb for parameter tuning 
in PM-trees is as follows: if disk costs need to be optimized, choose Upd as 
small as possible; when, on the other hand, the distance function is expensive 
to compute, the value of ripd should be higher. In any case, performance boosts 
for Upd > Tihr/^ are not significant, thus the value of ripd should not exceed 

1.6 The M+-tree 
A recent proposal by [Zhou et al., 2003] suggests improving the performance 

of M-trees by exploiting a concept called key dimension. The resulting structure, 
labeled an M+-tree, inherits substantial properties from the M-tree - it is a 
balanced tree implemented on disk memory. Its important difference can be 
seen in a new partitioning strategy. The M+-tree has a larger fanout, achieved 
by further partitioning each M-tree node into two subspaces called twin-nodes, 
using the key dimension. Unlike the M-tree, which is able to index any metric 
data, application of the M+-tree is limited to vector datasets employing the Lp 
metric. In what follows, we briefly introduce the key dimension and discuss 
the general properties of M'^-trees. 
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The key dimension is defined as the dimension that most affects distances 
among indexed data objects, that is the dimension along which the data objects 
are most spread. For example, suppose data objects in a 2-D vector space are 
positioned at various locations along the x axis, but appear to be a single object 
from the vantage point of the y axis. In this case, the key dimension is the x axis. 
In general, the following expression holds for two vectors (xi, 0:2,. • •, ^n) and 
(yi, y2, • • •, J/n) and the key dimension Dkey' 

\XD VDkeyl < Vi^l - yiY + (^2 - y2f + "' + {Xn-yn) key ^^key 

On no account can the distance between any pair of objects computed using 
only the key dimension be greater than the distance which takes all dimensions 
into consideration. For convenience, we show the concept of key dimension 
for the Euclidean distance. The same applies to any Lp distance on vectors, but 
not to generic metric spaces. 

The M+-tree modifies the internal node structure so that each entry uses two 
pointers to twin-nodes instead of one - twin-nodes cover two disjoint subspaces 
according to the key dimension principle. These two subspaces are defined by 
two boundary values of the key dimension, the maximum value of the key 
dimension for the left twin space and the minimum value for the right. Such 
a partitioning improves filtering: the greater the gap between these two values 
of the key dimension, the more effective the filter. The structure of an internal 
node entry takes the form: 

eft—twin^ ^Imax^ ^rminj P^"^right—twin) j 

where p is a pivot and r^ is the corresponding covering radius around p. The 
expression d(p, pP) represents the distance from p to its parent pivot p^. Finally, 
D^ey is the number of the selected key dimension. The bounding values of the 
key dimension are dimax and drmin for the left and the right twin subspaces, 
respectively. The pointers navigate to roots of the corresponding twin subtrees. 

Figure 3.10 illustrates differences between the M-tree and M+-tree struc-
tures. In part (a) of the figure, the M-tree's subspace, containing 10 objects, is 
presented. A new object OM must be stored in this node and the split procedure 
is executed. After the split, a new node is allocated and all objects including ON 
are distributed between two nodes. Figure 3.10b, on the other hand, presents the 
same situation, but respecting the M+-tree principles. Observe that the original 
M-tree's node region is further split by means of two parallel lines. These lines 
stand for the two values of the key dimension. 

Now suppose a new object ON arrives and the split is initiated. All objects of 
the affected node pair (twin nodes) plus the object ON are considered a single 
set and the min-Max strategy (mM JIAD_2) is applied exactly as with the M-tree. 
For the two new resulting nodes (regions), key dimensions are selected and the 
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Figure 3.10. Comparison of (a) M-tree and (b) M"'"-tree partitioning. 

regions further partitioned. Finally, we get four nodes from the original two. 
Provided the same node capacity is used, an M+-tree typically has fewer levels 
than the corresponding M-tree. 

From a performance point of view, the M+-tree is slightly more efficient than 
the M-tree. (See the performance evaluation in [Zhou et al., 2003]). The key 
dimension filtering strategy enables greater pruning effects for range queries 
with small query radii. For such queries, performance of M+ -trees is promising, 
however, for larger query radii, it becomes practically the same as for the M-tree. 
The performance boost for nearest neighbor queries is not clear-cut. In general, 
the advantage of lower CPU costs for range queries is difficult to exploit, because 
the search radius in nearest neighbor searches is initially high and decreases 
only slowly. The sole advantage over M-trees lies in the shorter priority queue, 
because the M+-tree stores only one of the twin-nodes. Due to the larger fanout 
of the M+-tree, the priority queue can be shorter, thus, some processing time 
can be saved for queue maintenance. In summary, this variation of the M-tree 
provides moderate performance improvements. At the same time, it restricts 
the application domain to vector datasets and Lp metric norms. 
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To make the list of M-tree-like structures more complete, we briefly mention 
a more efficient index structure called the BM+-tree [Zhou et al., 2005]. The 
structure further extends the concept of single key dimension of M+-trees to 
make use of two key dimensions, which define a binary hyperplane. This allows 
a better approximation of the direction in which high-dimensional objects are 
spread the most. The hypothesis behind is inherently the same: the more spread 
objects are, the higher probability of not accessing both the twin nodes during 
similarity queries evaluation. Despite the fact that BM+-trees offer higher 
performance compared to M"*"-trees, they are still limited to vector spaces only. 

1.7 TheM^-tree 
In contrast to previously presented members of the M-tree family, which try 

to improve performance of the M-tree in various respects and directions, this 
final variant has different objectives. Specifically, the M^-tree is able to run 
complex similarity queries as defined in Section 4.6 of Chapter 1. 

The first attempt to extend the M-tree to run complex similarity queries 
can be found in [Ciaccia et al., 1998b]. This approach supports the execution 
of queries with multiple predicates using the same distance function. The 
M^-tree by [Ciaccia and Patella, 2000a] further extends this basic idea and 
accepts several distance functions. For example, consider the query: Find 
images that contain a lion and the scenery around it like this. Assuming we 
have an image database with keyword-annotated objects and color histograms, 
this query involves both features. Using a keyword search, it is able to locate 
images with lions and by comparing histograms it can find the required matching 
scenery. Qualifying objects are then identified by using a scoring function 
df, which takes as input distances to objects with respect to individual query 
predicates. 

Figure 3.11 illustrates the difference between nodes in the M-tree and in the 
M^-tree. Since each object oi in the M^-tree can be characterized by more 
than one feature value, e.g. Oi[l] and Oi[2], the leaf node structure is extended 
to contain all the object's features as well as distances to respective parents. 
Notice that every feature can use a different distance function. The internal 
nodes are expanded by analogy, but additionally use separate covering radii for 
each feature. In the figure, we also give a geometric illustration of the difference. 
In the M-tree, all objects of a subtree rooted in ptr are sorted according to the 
pivot and the covering radius is established. However, in the M^-tree, we have 
multiple features for each object, so the transformation can be viewed as an 
n-dimensional space and the subtree's region turns out to be a hypercube. 

When a range query R{q^ r) is executed in M-trees, the tree is traversed from 
its root, and branches are pruned by testing whether entries intersect the query 
region. To this end, the lower bounds on distances between the query and objects 
in the subtrees are computed. In the M^ -tree, the search procedure is very similar 
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Figure 3.11. Node structure of (a) M-tree and (b) M -tree. Below the representation of node's 
covering region. 

and the lower bounds are assessed as follows: We compute the lower bound for 
every feature, specifically '^i^min{\di{q[i],pP[i]) - di{p[i]^pP[i])\ - r^[i],0). 
These lower bounds are then combined together using the scoring function d/, 
and only those entries for which the scoring function is maximally r are visited. 
The algorithm for kNN queries uses an analogous strategy. 

The authors compared the M^-tree with the sequential scan and Fagin's Ao 
algorithm, outlined in Section 4.6 of Chapter 1. An image collection containing 
two features, the image name and its color histogram, was chosen and several 
kNN queries executed. To implement Fagin's algorithm, two M-trees were 
built, one for each feature. The experiments revealed that the M^-tree is able to 
save about 20% in distance computations and 30% in I/Os compared to the ^o 
algorithm. Moreover, the performance of the Ao algorithm in terms of block 
accesses decreases for high values of k beyond the sequential scan. On the 
other hand, the M^-tree only reaches this sequential scan threshold. 

2. Hash-based metric indexing 
In tree-like indexing techniques, search algorithms traverse trees and visit 

nodes which reside within the query region. This represents logarithmic search 
costs in the best case. Indexes based on hashing, sometimes called key-to-
address transformation paradigms, contrast by providing a direct access to 
searched regions with no additional traversals of the underlying structure. In 
this section, we focus on hash-based techniques. For example, AESA variants 
can be classified as hashing techniques, because they are capable of direct ac-
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Figure 3.12. (a) The bps split function and (b) the combination of two bps functions. 

cess. But they are restricted to main memory. In the following, we present an 
interesting hash-based index structure that supports disk storage. 

2.1 The D-index 
The Distance Index (D-index) is a multi-level metric structure, based on 

hashing objects into buckets which are search-separable on individual levels 
- see Section 5.3 in Chapter 1 for the concept of partitioning with exclusion. 
The structure supports easy insertion and bounded search costs because at most 
one bucket per level need to be accessed for range queries with a search radius 
up to some predefined value p. At the same time, the use of a pivot-filtering 
strategy described in Section 7.6 of Chapter 1 significantly cuts the number of 
distance computations in the accessed buckets. In what follows, we provide an 
overview of the D-index, which is fully specified in [Dohnal et al., 2003a]. A 
preliminary idea of this approach is available in [Gennaro et al., 2001]. 

Before presenting the structure, we provide more details on the partitioning 
principles employed by the technique, which are based on multiple definition of 
a mapping function called the yo-split function. An example of a p-split function 
named bps (ball-partitioning split) is illustrated in Figure 3.12a. With respect 
to the parameter (distance) p, this function uses one pivot p and the median 
distance dm to partition a dataset into three subsets. The result of the following 
bps function uniquely identifies the set to which an arbitrary object o e V 
belongs: 

{ 0 if d{o,p) < dm- p 
1 if dlo,p)> dm+ p (3.3) 

— otherwise 
In principle, this split function uses the excluded middle partitioning strategy 
described in Section 5.3 of Chapter 1. To illustrate, consider Figure 3.12 again. 
The split function bps returns zero for the object 03, one for the object oi (it lies in 
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the outer region), and '—'for the object 02. The subset of objects characterized 
by the symbol '—'is called the exclusion set, while the subsets characterized 
by zero and one are separable sets. In Figure 3.12a, the separable sets are 
denoted by S]^^^(V), S^^{^{V) and the exclusion set by S'Jl^(P). Recall that V 
is the domain of a given metric space. Because this split function produces two 
separable sets, we call it a binary bps function. Objects of the exclusion set are 
retained for further processing. To emphasize the binary behavior. Equation 3.3 
uses the superscript 1 which denotes the order of the split function. The same 
notation is retained for resulting sets. 

Two sets are separable if any range query using a radius not greater than p 
fails to find qualifying objects in both sets. Specifically, for any pair of objects 
Oi and Oj such that bps^'^{oi) = 0 and bps^'^{oj) = 1, the distance between oi 
andoj is greater than 2p, i.e., (i(oi,Oj) > 2p. This is obvious from Figure 3.12a, 
however, it can also be easily proved using the definition of the bps function and 
applying the triangle inequality. We call such a property of p-split functions 
the separable property. 

For most applications, partitioning into two separable sets is not sufficient, 
so we need split functions that are able to produce more separable sets. In the 
D-index, we compose higher order split functions by using several binary bps 
functions. An example of a system of two binary split functions is provided in 
Figure 3.12b. Observe that the resulting exclusion set is formed by the union of 
the exclusion sets of the original split functions. Furthermore, the new separable 
sets are obtained as the intersections of all possible pairs of the original separable 
sets. Formally, we have n binary bps^'^ split functions, each of them returning 
a single value from the set {0,1, —}. The joint n-order split function is denoted 
as bps^'^ and the return value can be seen as a concatenated string of results 
of participating binary functions, that is, the string b = (bi^... ^bn), where 
bi e {0,1, —}. In order to obtain an addressing scheme, which is essential for 
any hashing technique, we need another function that transforms the string b 
into an integer. The following function (b) returns an integer value in the range 
[0..2^] for any string b e {0,1, - } ' " : 

^ r [biM...., bnh = EU ^""-^bj, if Vj bj ^ -
^ ^ \ 2^, otherwise 

When no string elements are equal to '—', the function (b) simply treats fe as a 
binary number, which is always smaller than 2^. Otherwise the function returns 
2^. 

By means of p-split functions and the (•) operator, we assign an integer 
number i (0 < i < 2^) to each object o E V and in this respect, group 
objects from P in 2^ + 1 disjoint subsets. Considering again the illustra-
tion in Figure 3.12b, the sets denoted as '̂ rooi' * f̂oil' *̂̂ ^̂̂  ^̂ ^ mapped to 
S'̂ Q'P ̂ Mp S'?2p S?^^ (i.e., four separable sets). The remaining combinations 
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SlQ.yS'^^l^^^^ are all interpreted as a single set Äĵ 'ĵ  (i.e., the 
exclusion set). Once again, the first 2^ sets are called separable sets and the 
exclusion set is formed by the set of objects o for which {bps^'^{o)) evaluates 
to 2^. 

The most important fact is that the combination of split functions also satisfies 
the separable property. We say that such a disjoint separation of subsets, or 
partitioning, is separable up to 2p. This property is used during retrieval, 
because a range query with radius r < p never requires accessing more than 
one of the separable sets and, possibly the exclusion set. 

Naturally, the more separable sets we have, the larger the exclusion set is. 
For a large exclusion set, the D-index allows an additional level of splitting by 
applying a new set of split functions to the exclusion set of the previous level. 
This process is repeated until the exclusion set is conveniently small. 

The storage architecture of the D-index is based on a two dimensional array of 
buckets used for storing data objects. On the first level, a bps function is applied 
to the whole dataset and a list of separable sets is obtained. Each separable set 
forms a separable bucket. In this respect, a bucket represents a metric region 
and organizes all objects from the metric domain falling into it. Specifically, 
on the first level, we get a one-dimensional array of buckets. The exclusion set 
is partitioned further at the next level, where another bps function is applied. 
Finally, the exclusion set on the final level, which will not be further partitioned, 
forms the exclusion bucket of the whole multi-level structure. Formally, a list of 
h split functions {bps^^'f", öps^ ' '^ , . . . , bps^'^'^) forms 1 + J^lLi 2"̂ ^ buckets 
as follows: 

^1 ,0? ^ 1 , 1 ) • • • 5 ^ 1 , 2 ^ 1 - 1 

^2 ,0? ^2 ,1? • • • 5 ^ 2 , 2 ^ 2 - 1 

In the structure, objects from all separable buckets are included, but only the 
Eh exclusion bucket is present because exclusion buckets Ei^h are recursively 
repartitioned on levels i + 1. The bps functions of individual levels should be 
different but must employ the same p. Moreover, by using a different order of 
split functions (generally decreasing with the level), the D-index structure can 
have a different number of buckets at individual levels. To deal with overflow 
problems and file growth, buckets are implemented as elastic buckets and consist 
of the necessary number of fixed-size blocks (pages) - basic disk access units. 

In Figure 3.13, we present an example of the D-index structure with a varying 
number of separable buckets per level. The structure consists of three levels. 
Exclusion buckets which are recursively repartitioned are shown as dashed rect-
angles. Obviously, the exclusion bucket of the third level forms the exclusion 
bucket of the whole structure. Observe that the object 05 falls into the exclusion 
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Figure 3.13. Example of D-index structure. 

set several times and is finally accommodated in the global exclusion bucket. 
The object 04 has also fallen into the exclusion bucket on the first level, but it is 
accommodated in a separable bucket on the second level. Below the structural 
view, there is an example of the partitioning applied to the first level. 

2.1.1 Insertion and Search Strategies 

In order to complete our description of the D-index, we present an insertion 
algorithm and a sketch of a simplified search algorithm. In Figure 3.14, the 
algorithm inserts a new object ON into the D-index access structure specified 
as DP{X, ^ 1 , ^2? • • • ? ^/i)» where rrii denotes the order of the split function. 
Obviously, ojsf belongs to the database X, which is a subset of the domain V of 
the metric space. Starting with the first level, the algorithm tries to accommodate 
ojsf in a separable bucket. If a suitable bucket is found, the object is stored in it. 
If it fails for all levels, the object ON is finally placed in the exclusion bucket 
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Insertion Algorithm 
tor i = 1 to h do 

if {bps'l'''^(ON)) <2^^ then 

exit 
endif 

enddo 
ON ^ Eh 

Figure 3.14. Insertion algorithm of the D-index. 

E^. In any case, the insertion algorithm selects exactly one bucket in which 
to store the object, and no other buckets are accessed. As for the number of 
distance computations, the D-index needs X^̂ ^̂  rrii distance computations to 
store a new object, assuming it is inserted into a separable bucket on the j-th 
level. 

Given a range query Q = R{q, r), where q is from the metric domain V, 
r < p and TZ{Q) denotes the query region, a simple algorithm can be used to 
execute the query as depicted in Figure 3.15. The function {bps^^'^{q)) always 

Search Algorithm 
for i = 1 to /i do 

return all objects o such that o e TZ{Q) fl B^ .^ ^^^,0. ., 

enddo 
return all objects o such that o e TZ{Q) H E^ 

Figure 3.15. Simple search algorithm for range queries. 

gives a value smaller than 2^*, because the parameter p is set to zero in this 
function call. Consequently, exactly one separable bucket for each level i is 
determined. Objects of the query response set cannot be in any other separable 
bucket on level z, because the query radius r is not greater than p(r < p) and the 
buckets are separable up to 2p. However, some may be in the exclusion zone -
the algorithm above assumes that exclusion buckets are always accessed. For 
that reason, all levels are considered, and the global exclusion bucket E^ is also 
accessed. The execution of this algorithm requires h+1 bucket accesses, which 
forms the upper bound of a more sophisticated algorithm described in [Dohnal 
et al., 2003a]. The advanced algorithm is also not limited by the size of the query 
radius, i.e., r < p. A detailed description of the general range search algorithm 
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as well as its extension for nearest neighbor queries is available in [Dohnal et al., 
2003a]. 

2.2 The eD-index 
Up to now, we have only considered similarity range and nearest neighbor 

queries. Some work in the field of hash-based index structures has also been 
done for similarity joins. In the following, we describe indexing techniques 
which support similarity self-joins in metric spaces, as defined in Section 4.4 of 
Chapter 1. In principle, there are two types of algorithm for answering similarity 
joins. The first category concerns methods based on the range search, while the 
second category is formed by specialized algorithms. 

Given a similarity self-join request S'J(//), algorithms based on the range 
search strategy employ a metric access structure that supports range queries to 
retrieve qualified pairs of objects, i.e., pairs (oi^Oj) such that d{oi^Oj) < ji. 
The idea is to perform n range queries, one for all objects in the database, using 
the same search radius r = /i. As a result, it is quite straightforward to define 
a specific algorithm for any access structure presented in Chapter 2. 

The bounded search costs and excellent performance for small similarity 
range queries of the D-index, confirmed by experiment, formed the chief moti-
vation to employ this structure for similarity joins, as well - in typical applica-
tions, the join parameter ji is small. More details about experimental evaluation 
of the D-index are given in Section 3. The algorithm based on range queries is 
proposed in [Dohnal et al., 2002] and given in Figure 3.16. 

The second category of similarity self-join algorithms is mainly comprised by 
specialized algorithms tailored to the specific needs of individual applications. 
For example, [Gravano et al., 2001] proposed a solution of similarity joins over 
string collections on top of a commercial database system. The core idea of 
such approaches is to transform the difficult problem of approximate string 
matching into some other search problem for which an efficient solution exists, 
e.g. query processing in a relational database system. [Dohnal et al., 2003b] 
have proposed a general solution, which is based, by contrast, only on the 
metric space postulates. The suggested structure, called an extended D-index 
(eD-index), is able to execute a similarity self-join over any data collection from 
a metric space domain. 

As the titles suggest, the partitioning principles of the eD-index and D-index 
are very similar. The core idea behind the eD-index is to modify the original 
p-split function so that the similarity self-join can be executed independently 
in individual buckets. The exclusion set produced by the modified function 
overlaps with the corresponding separable sets by a predefined margin (distance) 
e - see Figure 3.17 for illustration. Objects within the overlap are replicated, 
that is they belong to both the exclusion set and the corresponding separable 
set. This principle, called exclusion set overloading, ensures there is always 
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Range Query Join Algorithm 
#for every D-index level 
for i = 1 to /i do 

#for every separable bucket Bij on the level i 
for j^O to 2̂ ^ - 1 do 

#for every object q in the bucket Bij 
forall q in Bij do 

execute S = R{q^ JJL) 
^o e S : add the pair {q^ o) to the response set 

enddo 
enddo 

enddo 
# access the exclusion bucket 
#for every object q in the bucket E^ 
forall q in E^ do 

execute S = R{q^ fi) 
\/o e S : add the pair {q^ o) to the response set 

enddo 

Figure 3.16. Algorithm for similarity self-join queries based on range queries. 

(a) (b) 

Figure 3.17. The modified hps split function: (a) original p-split function; (b) modified p-split 
function. 

a bucket in which any qualifying pair (x, y) {d{x^ y) < e) can be found. In 
the eD-index, the overloading principle is implemented as a modified insertion 
algorithm of the D-index. In Figure 3.18, you can observe the adjustment which 
employs the original hps function. The only difference lies in the stop condition 
applied when the inserted object does not fall into the overlapping region of 
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eD-index Insertion Algorithm 
for i =: 1 to /i do 

\f{hps('''f'{oN)) <2^^ then 

if(fep5f^'^+'(oAr)) <2^^ then 
exit 

endif 
endif 

enddo 
ON ^ Ek 

Figure 3.18. Insertion algorithm for the eD-index. 

window^ 
d^jLi 

•-e—o o ^» • f • • f ocp o o 00 0 0 0 >-
p O l 0 2 0,o O h i " ^ - < \ ^ - ^ 0„d(p,Oj) 

Figure 3.19. The SHding Window algorithm. 

the exclusion set and a separable set. Otherwise, the algorithm proceeds to the 
next level where the copy of the new object is stored. As explained later, a 
special algorithm is used to find these buckets efficiently and avoid retrieving 
duplicates. In this way, the eD-index speeds up the evaluation of similarity 
self-joins. 

2.2.1 Similarity Self-Join Algorithm with eD-index 

The basic strategy of the similarity self join with the eD-index can be char-
acterized as follows: Execute the join query independently in every separable 
bucket on all levels of the eD-index and additionally on the exclusion bucket of 
the entire structure. This approach is correct due to the exclusion set overload-
ing principle - every object of a separable set which can make a qualifying pair 
with an object of the exclusion set is copied into the exclusion set. Finally, the 
partial results are concatenated to form the answer. 

The similarity self-join algorithm in individual buckets applies a sliding 
window approach - the idea is outlined in Figure 3.19. First, all objects of 
a bucket are ordered with respect to the pivot p. This pivot is one of the pivots 
used in a p-split function applied to partition the metric space into separable 
sets. Next, we define a sliding window of objects as an interval [o/o, o^i]. The 
algorithm moves the sliding window over the ordered list of objects from left 
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to right until all objects are examined. All pairs of objects at each window 
position are considered and qualifying pairs are reported. The length of the 
window is limited to the distance JJL, specifically d(p, Ohi) — d{p, oio) < yu. The 
specification of the algorithm is given in the pseudocode in Figure 3.20. The 
pivot-based strategy, i.e., a strategy taking pre-computed distances to all other 
pivots into account, is also employed because it significantly cuts the number 
of distance computations. In the figure, it is characterized by the function 
PivotFilter, 

Sliding Window Algorithm 
response <r- 0 
lo=l 
for hi = 2 ton do 

#move the lower boundary up to preserve window's width < fi 
increment lo while d^Ohi^p) — d{oio^p) > IJL 
#for all objects in the window 
for j = lo to hi — 1 do 

# apply the pivot-based strategy 
if not Pivot Filter {) then 

compute d{ojjOhi) 
if d{oj^Ohi) < 11 then 

# add the pair to the result 
{oj^Ohi) —> response 

endif 
endif 

enddo 
enddo 

Figure 3.20. Sliding Window Algorithm. 

Two important issues must be considered in the application of the exclusion 
set overloading principle. The first concerns the problem of possible duplicate 
pairs in the result of the join due to copies of objects reinserted into exclusion 
sets. Suppose, for example, that one of the separable buckets on the first level 
has a qualifying pair of objects. However these objects also fall into the overlap 
with the exclusion bucket. Consequently, they are both examined on the second 
level and may both fall once again into a common separable bucket. When such 
buckets are (independently) processed, identical pairs are reported several times. 
The authors propose a special "coloring" technique which marks duplicates of 
objects. Specifically, each level of the eD-index has a unique color assigned. 
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Figure 3.21. Coloring technique applied in the eD-index. 

and every duplicate of an object receives all colors of preceding levels on which 
the replicated object is stored. 

Figure 3.21 provides an example of an eD-index structure with 4 objects, 
represented by a circle, square, triangle, and hexagon. The circle, for example, 
is replicated and stored at levels one, three, and six. The circle at the first level 
has no color because it is the original, while the circle at the third level is red 
colored, because it has already been stored at the first (red) level. Furthermore, 
the circle at level six receives the red and blue colors, because it is stored at 
the corresponding levels. The other objects are analogously marked by their 
respective colors. Observe that the exclusion bucket has no specific color be-
cause no additional levels follow, so the objects accommodated there cannot be 
further duplicated. 

Before the search algorithm examines a pair, it decides whether objects of 
the pair share a color. If they have at least one color in common, the pair 
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is not considered. The concept of sharing a color by two objects means that 
these objects are also stored together at the same (previous) level, thus they 
have already been checked in a bucket of that level. Observe the circle and 
the hexagon stored in the same bucket on level six. Even though they form a 
qualifying pair, they are not reported because they share the color red. This is a 
consequence of the fact that both these objects are also stored at the first level. 
Thus, if they form a qualifying pair, they must have already been reported. 

The second issue concerns the value of parameter p, which is constrained 
by e < 2p. If e > 2p is true, some qualifying pairs cannot be examined 
by the algorithm, because the replication is not performed among separable 
sets. For example, assume objects Oi and Oj located in different separable 
sets - the separability property ensures that d{oi^Oj) > 2p. However, the 
expression e > 2p implies that a similarity join with p. > 2p can also be issued. 
The direct computation of distance between o ,̂ Oj reveals that d{oi^ Oj) < p. 
Unfortunately, the exclusion set overloading principle replicates objects in the 
overlap of the exclusion set and a separable set. As a result, the objects o ,̂ Oj 
cannot fall into the same bucket. Consequently, the separable sets are not 
contrasted enough to avoid omitting some of the qualifying pairs. 

The limitation on the value of e (e < 2p) seems to be the main drawback 
of the eD-index approach. However, the typical task of a similarity self-join is 
to find pairs of very close objects, which implies relatively small values for p. 
Thus, in reality, this issue is not that restrictive. 

3. Performance Trials 
In previous sections, we have surveyed various centralized (single computer) 

access structures, storing indexed data on a disk. In this section, we report our 
experience with two typical representatives of such methods in experimental 
trials, namely the M-tree and the D-index. To test the M-tree, we made use of 
the publicly available implementation [Ciaccia et al., 1997a]. For the D-index, 
we have used the implementation provided by D-index's authors. To render 
the results comparable, we used the same block size in both the M-tree and the 
D-index. 

We undertook three independent sets of experimental trials, each motivated 
by its own research question. They involved: 

1 a comparison of the M-tree with the D-index to highlight the advantages 
and disadvantages of tree-like versus hash-based approaches, 

2 a study of the effect on search costs of processing different types of queries, 
and 

3 a study of the applicability of centralized solutions to growing data archives, 
that is the problem of scalability. 
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Figure 3.22. Distance densities for VEC, URL, and STR. 

Additional details on the performance evaluation can be found in [Dohnal, 
2004]. 

3.1 Datasets and Distance Measures 
In order to make the experimental evaluation as objective as possible, we 

use three different datasets, each differing significantly in terms of its distance 
distribution. The specific datasets used were: 

VEC 45-dimensional vectors of image color features compared by the quadratic 
distance measure reflecting correlations between individual colors. 

URL Sets of URL addresses visited by users during work sessions with the 
Masaryk University information system. The distance measure applied is 
based on the similarity of sets, specifically using Jaccard's coefficient. 

STR Sentences of a Czech language corpus compared using an edit distance 
measure that counts the minimum number of insertions, deletions or substi-
tutions to transform one string (sentence) into another. 

For illustration see Figure 3.22, showing the distance densities for all our 
datasets. Notice that VEC is practically normally distributed, whereas the 
distribution of URL is discrete and that of STR is highly skewed. 

In all our experiments, the query objects are not necessarily chosen from 
the indexed datasets, but follow the same distance distribution. Search costs 
were measured in terms of distance computations and block reads (number of 
disk accesses), which is sufficient to correctly estimate CPU and I/O costs. 
The Loo distance measures used in the pivot-based filtering of the D-index are 
deliberately ignored, because according to our tests, the costs of computing 
such distances are several orders of magnitude smaller than the costs needed 
to compute any of the distance functions applied in the experiments. Since 
the query execution costs very much depend on the specific instance of the 
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Figure 3.23. Comparison of the range search efficiency in the number of distance computations 
(above) and block accesses (below) for VEC, URL, and STR. 

query object, the reported cost values are the mean values obtained from fifty 
executions of queries with different query objects and search selectivity held 
constant, i.e., with queries using the same search radius or the same number of 
nearest neighbors. 

3.2 Performance Comparison 
In the first group of experiments, we focus on three different approaches, 

namely the M-tree, D-index, and the sequential scan (SEQ) which serves us as 
a baseline - the sequential scan forms the basic cost model both in terms of 
disk accesses and the number of distance function evaluations. Obviously, the 
sequential file stands for the most economical organization with respect to the 
disk space, but needs the maximum number of distance comparisons to evaluate 
a query. The M-tree and D-index are, respectively, appropriate representatives 
for tree-based and hash-based categories of similarity search indexes. The 
results of experiments for range queries are reported in Figure 3.23. All datasets 
consist of about 11,000 objects. The maximal query radii were selected to keep 
the response set size at about 20% of the database. 

For all queries tested, the M-tree and D-index required fewer distance com-
putations than the sequential scan, which is desirable and is in fact a prerequisite 
for any index organization. We can also observe that the D-index outperforms 
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the other structures in many situations, especially when queries with small se-
lectivity are posed - the effectiveness of the pivot-based filtering inside the 
D-index strongly depends on the data distribution and the query size. Because 
of the normal data distribution of the vector dataset, the pivot-based filtering in 
the D-index becomes less efficient for query radii greater than 2,500. Where 
many pairs of objects are at such a distance, the pruning effect is diminishing. 
Observe that, with the URL dataset, the D-index is competitive for just a few 
small query radii. In general, we observe that the highly skewed and discrete 
distribution together with the fixed hashing schema of the D-index hands an 
advantage to the fully-adaptive M-tree, especially for queries with higher radii. 
The authors of the D-index also observe that the problem of selecting a good 
pivot is more difficult for discrete distributions, where an object different from 
any other object can easily be promoted without actually being a good pivot. 

The global increasing trends in the number of disk page accesses are merely 
the same as those for distance computations. Observe that the sequential scan is 
often more efficient than the sophisticated M-tree, because the M-tree typically 
needs twice the disk space to store the same data as the SEQ. As a result, it is 
usually worse than the linear scan, since the ratio of wasted disk space markedly 
influences I/O search costs. This drawback is addressed in some extensions of 
the M-tree, but the improvements are only marginal. In contrast, the D-index is 
very economical of space and needs slightly more disk memory than the SEQ. 
Only for some queries from the VEC dataset does the M-tree require fewer 
disk reads than the SEQ, but the D-index almost always remains beneath the 
linear scan threshold for this data. However, elevated disk costs can be tolerated 
when an index structure saves many distance evaluations by a distance function 
very demanding of CPU time. Of course, I/O costs become crucial when the 
distance function is very easy to compute. In this respect, the hashing schema 
of the D-index is more promising than that of the M-tree. 

Figure 3.23 reveals another interesting observation. To run an exact-match 
query, i.e., a range search with r = 0, the D-index needs to access only one disk 
page. Compare, in the same figure, the number of block reads for the M-tree. 
They are one half that of the SEQ for vectors, practically equal to the SEQ for 
the URL sets, and actually three times higher for the sentences. Note that an 
exact-match search is important when a specific object must be eliminated - the 
location of the deleted object forms the main cost. In this respect, the D-index is 
able to manage deletions far more efficiently than the M-tree. The outcome of 
the same test with r = 0 in terms of distance computations can be summarized 
as follows: The D-index needed just twelve and five distance evaluations for the 
VEC and STR datasets, respectively. Even for the URL collection, the D-index 
performed better than the M-tree. In summary, the D-index is very efficient in 
insertions or deletions of objects compared to the other techniques explored. It 
is also the preferable type of organization for range queries with narrow radii. 
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Figure 3.24. Comparison of the range search efficiency in the number of distance computations 
(above) and block accesses (below) for the kNN search on STR. 

3,3 Different Query Types 
The objective of the second group of tests is to show that costs also depend 

on various query types. Figure 3.24 shows results of experiments for range and 
nearest neighbor queries. We use the STR collection, because the performance 
contrast is most marked here. For the kNN queries, both indexes tested exhibit 
more or less the same behavior and the greatest advantage of the D-index, the 
fast processing of small queries, decreases. This reveals the fact that a kNN 
query execution, even for small k, is very expensive and many unqualified data 
objects must be inspected to get the result. The experiments also show that the 
difference in search costs for fc = 1 and k = 100 is insignificant. However, the 
D-index is still twice as fast as the M-tree as far as distance computations go, 
and four times faster in terms of disk accesses. 

We also evaluated similarity joins, probably the most demanding operation 
even for small thresholds of //. Figure 3.25 shows results for the VEC and 
STR datasets, again containing about 11,000 objects. In the figure, three algo-
rithms are compared. NL (nested loops) represents the naive approach, which 
incrementally compares all object pairs against the join constraint fi. The RJ 
(range join) algorithm is based on the D-index, and the OJ (overloading join) 
algorithm uses the eD-index. For details of these algorithms, please refer to 
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Figure 3.25. Join queries on the VEC and STR datasets. 

Section 2.2. To illustrate the complexity of this search execution, take as an 
example the STR collection and the similarity self-join SJ{1), In this case, the 
execution requires 54,908 distance computations even for the most efficient OJ 
algorithm. The kNN query, by contrast, with /c = 1, needs only 5,567, and 
the range query with r = 1 just several tens of distance evaluations. 

In both graphs, query selectivity increases up to /i = 28 and ii = 1800 
for the STR and VEC datasets, respectively, retrieving about 1,000,000 pairs. 
As expected, the number of distance evaluations performed by the RJ and OJ 
algorithms increases rapidly with growing ^. However, the OJ outperforms the 
RJ by more than twice for smaller joins on the STR dataset. The limitation of 
the OJ algorithm can be observed in the figure for the VEC data. It is due to 
the fact that the exclusion overloading principle requires 2/1 < p, i.e., /x < 600 
for VEC. Here, the OJ is even more efficient and achieves seven times better 
performance than the RJ. This is mainly caused by the distance distribution of 
the VEC dataset, where the average distance between each pair of objects is high, 
so the small query selectivity can benefit from the higher pruning effectiveness 
of the pivot-based filtering. On the other hand, the same distance distribution 
incurs poor performance for fi = 1800. The reason is analogous, that is, objects 
are not contrasted enough for the pivot-base filtering to remain effective. 

3.4 Scalability 
We have shown that some access structures are able to outperform others, 

and that search costs depend not only on the structure but also on query type 
and the distance distribution of datasets. However, considering the amount of 
available data on the web, scalability of search structures is probably the most 
important issue to investigate. In the elementary case, it is necessary to study 
what happens to performance as the amount of data grows. An investigation of 
this phenomenon formed the objective of our final group of experiments. 
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Figure 3.26. Scalability of range (left) and nearest neighbor queries (right) for the VEC dataset. 

Figure 3.26 presents scalability of range and nearest neighbor queries in 
terms of distance computations and block accesses. In these experiments, the 
VEC dataset is used and the amount of data grows from 100,000 up to 600,000 
objects. Apart from the SEQ organization, individual curves are labeled by a 
number indicating either the count of nearest neighbors or the search radius, 
and a letter, where 'D' stands for the D-index and 'M' for the M-tree. Query 
size is not provided for the results of SEQ because sequential organization has 
the same costs no matter the query. The results indicate that on the level of 
distance computations, the D-index is usually slightly better than the M-tree, 
but the differences are not significant - the D-index and M-tree can each save a 
considerable number of distance computations over the SEQ. To solve a query, 
the M-tree needs significantly more block reads than the D-index and for some 
queries (see the 2,000M curve) this number is even higher than for the SEQ. 
The reason for such behavior has been given earlier. 

In general, the D-index can be said to behave strictly linearly when the size 
of the dataset grows, i.e., search costs depend linearly upon the amount of data. 
In this regard, the M-tree came out slightly better, because execution costs for 
querying a file twice as large were not twice as high. This sublinear behavior 
should be attributed to the fact that the M-tree incrementally reorganizes its 
structure by splitting blocks and, in this way, improves data clustering. On the 
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Figure 3.27. Scalability measured in speedup for RJ (left) and OJ (right) algorithms on the STR 
dataset. 

Other hand, the D-index used a constant bucket structure, where only the number 
of blocks changed. However, the static hashing schema allows the D-index to 
have constant costs for exact-match queries. The D-index required one block 
access and eighteen distance comparisons, independent of dataset size. This 
was in sharp contrast to the M-tree, which needed about 6,000 block reads and 
20,000 distance computations to find the exact match in a set of 600,000 vectors. 
Moreover, the D-index has constant costs to insert one object, while the M-tree 
exhibits logarithmic behavior. 

For similarity self-join queries, the situation is comparable. In [Dohnal 
et al., 2003b], the STR database was used and the data size varied from 50,000 
to 250,000 sentences - the decreased maximum data size was applied due to 
the join complexity. Figure 3.27 reports the results in terms of speedup, i.e., 
how many times faster the algorithm is than the NL (nested loops) approach. 
The experiments were conducted for queries of small selectivity typically used 
in applications like data cleaning or copy detection. The results indicate that 
both RJ and OJ have practically constant speedup, which corresponds to costs 
growing quadratically with data size. An exception can be observed for /x = 1, 
where the RJ slightly deteriorates, while the OJ improves its performance. This 
is very simple to understand because costs for the smallest queries are highly 
influenced by the distance distribution, which may change as the dataset grows. 
All in all, the OJ performs at least twice faster than the RJ algorithm. 

The basic lessons learned from these experiments are twofold: 

• similarity search is expensive; 

• the scalability of centralized indexes is linear. 

Of course, there are differences in search costs among individual techniques, 
but the global outcome is that search costs grow linearly with dataset size. This 
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property prohibits their applicability for huge data archives, because, after a 
certain point, centralized indexes become inefficient for users' needs. 

Suitable solutions arise from two possibilities. First, increased performance 
may be obtained by sacrificing some precision in search results. This technique 
is called approximate similarity search and we discuss it in Chapter 4. Second, 
more storage and computational resources may be used to speed up executions 
of queries. The main idea here is to modify centralized solutions by considering 
parallel environments and developing distributed structures. An advantage of 
distributed processing is that we can spread the problem over a network and 
computations can consequently be parallelized. Parallel and distributed access 
structures are the subject of Chapter 5. 



Chapter 4 

APPROXIMATE SIMILARITY SEARCH 

The general algorithms for executing approximate range and nearest neigh-
bor queries in metric spaces discussed in Section 9.2 of Chapter 1 are able to 
implement different strategies by means of a properly defined pruning condition 
and stop condition. In this chapter, we present some relevant approximate simi-
larity search strategies based on either one or both these conditions. The choice 
between methods is constrained by each method's ability to support structures 
that organize data on disk memories. Finally, the pros and cons of approximate 
similarity search are treated, and evidence provided by tests conducted on real 
datasets is discussed. 

1. Relative Error Approximation 
An approximation strategy proposal for range and nearest neighbor queries 

which guarantees the relative error on distances remains smaller than a user-
specified value, was presented in [Zezula et al., 1998a, Amato, 2002]. 

Let TZq = (q^Vq) be a query region and TZi = {Vii'^i) be a data region. 
Precise similarity search algorithms discard the region TZi when there is no 
overlap between Kq and TZi, because it is guaranteed that no qualifying objects 
are contained in Ki. Formally, the region TZi is not accessed when: 

d{q,Pi) -ri>rq (4.1) 

As Section 1.1 of Chapter 3 explains, the power of this test can be further 
enhanced by methods which exploit hierarchical space decomposition like the 
M-tree. Let TZp — (pp^ Vp) be the parent region of Ki, which implies that TZi 
is completely contained inside Tip, An additional pruning condition can be 
applied in order to avoid the region completely. So, the overlap test given by 
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Equation 4.1 is not needed, and the entire sub-tree rooted in TZi can be safely 
pruned if the following inequality holds: 

l%,Pp) - d{pi,pp)\ -ri>rq (4.2) 

These two "exact" pruning tests can be conveniently relaxed to obtain an 
approximate similarity search algorithm in which the quality of the result-set 
is constrained by a user-defined relative error on distances. 

Let o^ be the actual nearest neighbor of q, and o^ some other object in the 
searched collection. The object o"^ is called the (1+e)-approximate-nearest-
neighbor [Arya et al., 1998] of object q if its distance from q is within a factor 
(1 + e) of that of the nearest neighbor o^, that is when 

In other words, when the previous formula holds, the distance of object o^ from 
q is at most 1 + e times bigger than the distance to the actual nearest neighbor 

This idea can be generalized for the fc-th nearest neighbor of g', fori <k<n, 
where n is the size of the database. Using o^ and o^ to designate the k-ih 
approximate and the k-th actual nearest neighbors respectively, we state that 

Again, o^ is called the (l+e)-k-th-approximate-nearest-neighbor of q. In both 
cases, € represents the relative error on distances to o^ or o^. 

The pruning tests in Equations 4.1 and 4.2 can be relaxed to discard regions 
even if they overlap the query region, while still guaranteeing a relative error on 
distance not exceeding a user-specified value of e. To this aim, let us consider 
the following alternate expressions for Equations 4.1 and 4.2: 

(4.3) 
[ false otherwise 

and 

\d{p,,q)-dlvuPp)\-n < ^ '^ Î ^PP' ^) ~ ^(Pi.Pp)I - n > 0 
(4.4) 

false otherwise 

The numerators in the fractions above represent the distance to the fc-th nearest 
neighbor of q (as discovered to that point in the nearest neighbor search), or 
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rgKl+s) 

Figure 4.1. The region TZi = {pi,ri), its parent region TZp = {pp,rp), the query region 
1Zq{q,rq), and the reduced query region TZe = {q,rq/{l + e)) 

the maximum accepted distance from q, in case of range search. Provided 
the nearest neighbor search has not been completed, this distance can also be 
interpreted as the distance from q to the current approximate neighbor. The 
denominators, on the other hand, stand for lower bounds on distances between 
q and objects within the region TZi. To put it differently, the denominators 
represent the minimum distance an object in the given region might have with 
respect to q. Naturally, if the lower bounds (i.e., denominators) are greater than 
the current radius of q, the region TZi cannot contain any qualifying object and 
can therefore be ignored in the search process. 

In order to modify these tests for approximate searching, the relative factor 
e can be used to relax the lower bounds in the following way: 

5 ( ^ ^ < l + e ifd{p,,q)-r,>0 

false otherwise 
(4.5) 

and 

\d{pp,g)-d{pi,Pp)\-n < 1 + ' if l^(^P' ^) " d{pi,pp)\ -ri>0 
(4.6) 

false otherwise 

Naturally, this can never increase similarity search costs, because the number 
of distance computations and the number of node reads can both only be reduced. 
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In fact, the relaxation has the effect of using a smaller query region TZe = 
{q^ rq/{l + e)) than the original, as Figure 4.1 illustrates. The precise similarity 
search algorithm would use the radius r^ and thus access the region TZp. But in 
the approximate approach, the reduced region IZ^ no longer intersects TZp. 

Let us label the approximate pruning test ePrune{TZq^TZi^ e) defined by 
Equation 4.5, and that defined by Equation 4.6 ePrePrune{TZq^ TZi^ e). The 
pruning condition dictated by the approximate similarity search algorithms pre-
sented in Section 9.2 of Chapter 1 is as follows: 

Prune{TZq^TZi^e) = if ePrePrune{Tlq^TZi^ e) 
return true 

else 
return ePrune{TZq^ ^ i , e). 

As far as the stop condition is concerned, we have that 

Stop{r esipoiise^ Xs) — false^ 

because the Relative Error Approximation technique is based only on the relaxed 
branching strategy and the stop condition is not defined. In this respect, the 
stop condition is always false. 

2. Good Fraction Approximation 
The nearest neighbor search algorithm presented in Section 6.1 of Chapter 1, 

gradually improves upon the result-set in a series of iteration steps. With each 
iteration, whenever a new object o is found with distance from the query object 
q less than some object in the current result-set, the fc-th nearest o^ of the result 
set is removed and o is inserted in its place. 

In [Zezula et al., 1998a, Amato, 2002], an approximate nearest neighbors 
search algorithm is proposed. It prematurely stops search execution as soon as 
all objects of the result-set belong to a user-specified fraction of objects closest 
to the query object q. To explain the idea, suppose that the dataset X contains 
10,000 objects oi, 02 , . . . , 010,000 ordered with respect to their distances from 
the query object q. If the fraction chosen is 1/200 (that is 0.5%), the approx-
imation algorithm will halt when the result-set is a subset of {oi, 02,..., 050}, 
since 10,000/200 = 50. If the fraction determines subset smaller than or equal 
to k, approximation is not possible and the precise result-set is retrieved. 

An efficient implementation of this idea uses a probabilistic approach which 
exploits the concept of the distance distribution. The properties of the distribu-
tion of distances in metric space are discussed in Section 10.1.2 of Chapter 1. 

Suppose we have a metric space M = (^, d). The distance distribution 
relative to pi, Fp.{x) = Pr{(i(pi, o) < x}, gives the probability that an object 
o chosen at random from V will have a distance from pi which is less than x. 
Suppose the dataset X C V forms a representative sample of the domain V, 
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Figure 4.2. An estimation of the fraction of the objects closest to g, whose distances from q are 
less than d{q, Ok), can be obtained by using Fq{x). 

i.e., the distribution of distances in X is statistically similar to that of V. This 
can generally be assumed to be true given a large enough number of objects in 
X, In this case, Fp.{x),pi € X, represents that fraction of objects in X for 
which the distance from pi is less than or equal to x. If the number of objects 
in X is n, the expected number of objects in X with distance from pi less than 
xisn ' Fp^{x). 

Let response represent the temporary result-set obtained at a certain in-
termediate iteration of the nearest neighbor search execution. Let o^ be the 
current fc-th object in the response and d{q^ Ok) its distance from q. We have 
that Fq{d{q^ o^)) corresponds to the fraction of objects in X whose distances 
from q are less than or equal to d{q^ o^), as also shown in Figure 4.2. Since 
all other objects in the response have a distance from q less than or equal to 
d{q^ Ok), all objects in the response are included in that fraction. For instance, 
when Fq{d{q^ Ok)) = 1/200, the response is expected to be included in the 
set corresponding to the 0.5% of objects which lie closest to q. 

So far, we have assumed that the distribution function Fq is known. How-
ever, computing and maintaining this information for any possible query ob-
ject is unrealistic in practice, because query objects g G P are not known 
a priori. A solution is to use the overall distance distribution, defined as 
F{x) = Pr{(i(oi,02) < x}, instead of Fq. Since, as discussed in Section 
10.1.2, the homogeneity of viewpoints is typically high, F can reliably be used 
as a substitute for any Fq. 

The approximate nearest neighbor search algorithm prematurely stops ex-
ecution when F{d{q^ o^)) is less than a user-specified threshold frac, corre-
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Figure 4.3. Trend of du (iter) as the search algorithm progresses. 

sponding to the desired fraction of the entire dataset. The stop condition is 
defined as: 

Stop{response^ frac) = Fq{d(q^Ok)) < frac^ 

where Ok is the k-th object in the response. 
This approximation method only applies the stop condition. The pruning 

condition therefore performs nothing special aside from the usual exact overlap 
test: 

Prune{Tlq, Tli, Xp) ^ d{q,pi) > r^ + n, 

where TZq == (g, r^) is the query region, TZi — {pi^ Vi) is a data region, and the 
parameter Xp is obviously left unused. 

3. Small Chance Improvement Approximation 
As precise nearest neighbor search algorithms iterate, the distance d{ok^ q) 

of the A:-th current object Ok from the query object q becomes smaller and 
smaller. The improvement due to radius reduction is initially rapid but pro-
gressively slows down. The approximate strategy for nearest neighbor search 
first proposed in [Zezula et al., 1998a] and later refined in [Amato, 2002] halts 
execution as soon as improvement in the result-set slows down below a user-
specified threshold. This strategy is presented more formally in what follows. 

Let dit{iter) be the distance of the query object q from the k-th object in the 
response set at iteration iter. The function is defined as 

dit{iter) = d{ok{üer),q), 

where Ok{iter) is the fc-th nearest object in the response set at iteration iter. 
Figure 4.3 shows the characteristic trend of da {iter) as a function of the number 
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Figure 4.4. Trend of du (iter) and two possible approximation curves. 

of iterations. It can be seen that refinements of the distance are considerable 
during the initial iteration steps but then become less significant, with little 
or no improvement after a certain number of iterations. Observe that du^iter) 
often assumes several consecutive constant values. This happens when accessed 
regions do not contain better objects, and the length of such (no improvement) 
sequences is growing with an increasing number of iteration steps. 

The problem here is how to determine the moment, i.e., the iteration, when 
the chances for distance improvements are conveniently low. In fact, dit{iter) 
is a function that is not known a priori since its values become available as the 
search algorithm proceeds. In addition, it is a piecewise constant function, i.e., 
there are intervals where it assumes constant values, but it may decline again 
later. To cope with these problems, dit{iter) is approximated by a continuous 
function, designated (p{iter), which is used to decide if search algorithms should 
be stopped or not. 

The approximation of dit{iter) is obtained by using the method of discrete 
least-squares approximation (see, e.g., [Burden et al., 1978]). Specifically, the 
curve (p(iter) approximating dit{iter) has the following form: 

(f{iter) = ci • (fi{iter) + C2. 

The least-squares approximation technique finds values of ci and C2 for which 
(p{iter) optimally approximates dit{iter), once a specific curve (pi is chosen. 
Successful results were obtained using the hyperbolic function (pi{i) = 1/i 
and the logarithmic function (fi (i) = log{i). For illustration. Figure 4.4 shows 
a specific function daiiter) and its two approximations. 

The fact that (p{üer) is a continuous decreasing function leads to the follow-
ing definition of a stop condition: Informally, we want to stop the algorithm 
when (fi{iter) ceases to decline dramatically and the change between consec-
utive iterations drops below a threshold value. From the mathematical point 
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of view, we use the derivative ip'{iter) to characterize the shape of the curve 
(f{iter). Because (f(iter) is decreasing, its derivative will always be negative. 
The more rapidly the function decreases, the higher the negative number the 
derivative returns. Thus a parameter der can be chosen so that the algorithm 
halts when Lp'{iter) > der, since this indicates that (p{iter) is now decreas-
ing only very slowly. The parameter der is fixed in such a way as to control 
the tradeoff between approximation quality and performance improvement. Of 
course, der approaching zero results in poor performance but high approxi-
mation quality, because the algorithm may stop very close to its natural end. 
Higher negative values of der, on the other hand, result in higher performance 
but poorer quality, because the algorithm may stop prematurely, when the cur-
rent result-set is still quite different from the precise result-set. Obviously, 
with the threshold der set to zero, the algorithm behaves like a precise nearest 
neighbors search. 

This method is based only on the stop condition, so the pruning condition per-
forms the usual (exact) overlap test and only discards a node when its bounding 
region fails to overlap the query region, i.e.: 

PruneiUq, 7^̂ , Xp) = d{q,pi) > r^ + r^, 

where TZg = (g, r^) is the query region and TZi — (p^, n ) is a data region, and 
the parameter Xp is again left unused. 

On the other hand, the stop condition refines ip{iter) iteration by iteration 
and checks if the derivative (p'{iter) is above the approximation threshold: 

AS'top(response, der) = let iter denotes the iteration number; 
let Ok be the fc-th element of response; 
compute (/p(iter)using the new 

point (zter, d{ok^ q))v^ addition 
to the points previously used; 

if iter==1 
return false] 

else 
return((/?'(iter) > der); 

4. Proximity-Based Approximation 
As we have already explained, there is no guarantee that qualifying objects 

will be found in the intersection of data and query regions. Depending on 
specific distribution of data, it may happen that the overlap covers a portion of 
the space containing very few or no objects. Therefore, some regions are more 
likely to contain the query response than others. 
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An approach proposed in [Amato et al., 2003, Amato, 2002] attempts to 
detect these situations and is based on the relaxed branching strategy. It relies 
for its underlying concept upon the proximity of ball regions discussed in Sec-
tion 10.2 of Chapter 1. In fact, the proximity prox{7Zq, TZi) of two ball regions 
TZq^ TZi is defined as the probability that a randomly chosen object o over the 
same metric space M. appears in both the regions. 

The basic idea here is to use the proximity measure to decide if a region should 
be accessed or not, so that only data regions with proximity to the query region 
greater than a specified threshold px are accessed. Of course, some regions 
containing qualifying objects may be falsely discarded by the algorithm, so the 
results obtained are only approximate. When the threshold is set to zero, search 
results are precise - the higher the proximity threshold, the less accurate the 
results, but the faster the query execution. 

Let TZq be a query region and TZi a data region. The pruning condition of the 
approximate range and nearest neighbors search is defined as follows: 

Prune{TZq^TZi^px) = prox(TZq^TZi) < px. 

This technique is among those that omit a stop condition, so the stop condition 
always evaluates to false: 

S'top(response, Xg) = false. 

5. PAC Nearest Neighbor Searching 
In [Ciaccia and Patella, 2000b], an approach called the Probably Approx-

imately Correct (PAC) nearest neighbor search in metric spaces is proposed. 
The idea is to bound the error on distance of the approximate nearest neigh-
bor so that a (l+e)-approximate-nearest-neighbor is found. In addition, the 
proposed algorithm may halt prematurely when the probability of the current 
(l+e)-approximate-nearest-neighbor satisfies the threshold S. In fact, the ap-
proximation is controlled by two parameters. The e parameter is used to specify 
the upper bound on the desired relative error on distance of the approximate 
nearest neighbor, while the S parameter specifies the degree of confidence that 
the upper bound e has not been exceeded. If ö is set to zero, the algorithm stops 
when the resulting object is guaranteed to be the (l+e)-approximate-nearest-
neighbor. Values of S greater than zero may return an object that is not a 
(l+€)-approximate-nearest-neighbor. On the other hand, when e is set to zero, 
6 controls the probability that the retrieved object is not the actual nearest neigh-
bor. Of course, when both e and S are set to zero, a precise nearest neighbor 
search is performed. 

More formally, let q be the query object, o^ the actual nearest neighbor, 
and o^ the approximate nearest neighbor found. Let eact be the actual error on 
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distances of o"̂  and o^, that is 

d(q, o^ 

The PAC nearest neighbor algorithm retrieves a (l+e)-approximate-nearest-
neighbor with confidence b. That is, the algorithm stops when o^ is such that 

Pr {eaci > 6} < (J. 

The pruning condition for this strategy is defined in the same way as that of the 
Relative Error Approximation technique given in Section 1. Besides the usual 
exact overlap test, it incorporates the extended pruning test which exploits a 
tree-like hierarchical structure and is specified in Equation 4.2 (pg. 146). For 
convenience, we give the pruning condition in the pseudocode below: 

Prune{TZq^ TZi^e) — if ePrePrune{Tlq^ TZi^ e) 
return true 

else 
return ePrune{TZq^ TZi^ e). 

The stop condition is based on the distribution of nearest neighbors in X (of 
cardinality n) with respect to q, designated as Gq{x) and defined as follows: 

Gq{x) = Pr {3o G X : d{q, o) < x} - 1 - (1 - Fq{x)Y, 

As previously stated, the algorithm stops when Pr {eact ̂  e} ^ »̂ where eact 
is the actual relative error on distances. That is when 

Pr {3o G X : d{q, o^)/d{q, o) - 1 > e} = 

= Pr {3o G X : d{q, o) < d{q, o^)/(l + e)} < S. 

This leads to the definition of the stop condition as: 

S'top(response,€,5) = Gq{d{q^o^)/{l + e)) < 5. 

The limitation of this approach is due to its only being defined for INN simi-
larity queries. 

6. Performance Trials 
In this section, we provide the reader with a comparison of the techniques 

introduced within this chapter. We have used implementations provided by 
respective authors. These prototypes are all based on the publicly available 
implementation of the M-tree [Ciaccia et al., 1997a]. To assess performance 
objectively, we performed various experiments using the collection of 11,000 
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Figure 4.5. Approximate range query results: (a) Relative Error Approximation and (b) 
Proximity-based Approximation techniques. 

objects of the VEC dataset described in Section 3.1 of Chapter 3. Data partition-
ing on this dataset results in highly overlapping regions and precise similarity 
search typically has high costs. In this respect, this dataset is a good candi-
date for demonstrating the advantages of the approximate similarity search. 
Note that when precise similarity search is already efficiently executed, there 
is obviously not much space for further improvements. 

We experimentally varied approximation parameters, query radii, and the 
number of objects retrieved. For each test configuration, approximate search 
algorithms were executed using fifty different query objects (not occurring in 
the dataset), the costs presented being averaged values. Results of the trials are 
shown in Figure 4.5 for range queries and in Figure 4.6 for the nearest neighbor 
queries. In the following, we discuss these results in greater depth. 

6.1 Range Queries 
The approximate range search can only be implemented using the Relative 

Error Approximation technique or the Proximity-based Approximation tech-
nique. We executed range queries with radii varying from 1,800 to 3,000, so 
the response size varied between 1% and 20% of objects in the dataset. The 
approximation parameters of the two methods were varied, and for each test 
configuration the improvement in efficiency IE and recall R, as defined in Sec-
tion 9.3 of Chapter 1, were computed. Results are shown in Figure 4.5, where 
the curves illustrate the dependence of improvement in efficiency IE on recall 
R for different query radii. 

As would be expected, both methods obtained high values for IE in corre-
spondence to small values of R- the improvement in efficiency is paid for by 
lower recall. Performance is generally better when small query radii are used. 

Observe that the improvement in efficiency for approximate range search 
algorithms is not very high. In fact, it is always below one order of magnitude. 
For example, the Relative Error Approximation method executes a range query 



156 SIMILARITY SEARCH 

0.005 0.01 0.015 0.02 0.025 0.03 

6P 

( C ) (d) 

-•-eps=2 
-»-eps=3 
-^eps=4| 

0.001 0.002 0.003 0.004 0.005 

EP 

(e) 

Figure 4.6. Approximate nearest neighbors query results for all five methods. 

with radius 2,200 1.8 times faster with recall R = 0.2, that is 20% of objects 
retrieved by the precise search occur in the approximate result. On the other 
hand, the Proximity-based Approximation method with the same recall is able 
to execute the same query six times faster than the precise execution. The 
difference in performance of these two methods is mainly due to the superiority 
of the Proximity-based Approximation method in detecting regions which can 
be discarded. 

6.2 Nearest Neighbors Queries 
All the methods presented in this chapter can be used for approximate nearest 

neighbor searches. In general, the improvements in efficiency obtained are high 
even for good quality results. Nearest neighbor queries in our experiments were 
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executed varying k between 1 and 50 with the exception of the PAC method, 
which is Hmited to using k = 1 only. We varied the approximation parameters 
of the methods and for each configuration computed improvement in efficiency 
IE and error on position EP, as defined in Section 9.3 of Chapter 1. Since the 
PAC method depends upon two approximation parameters, 6 and e, we used ö 
varying over several values of EP for three fixed values of the relative distance 
error e. Results are depicted in Figure 4.6, where we plot IE versus EP. Large 
improvements in efficiency can be observed for all methods, but the specific 
values depend upon accuracy as measured in terms of error on position EP. 
Performance is systematically higher for small values of k. 

The Relative Error Approximation method proved to be the least efficient. 
The method seems to saturate for high values of the approximation parameters, 
with no additional improvements in efficiency obtained. Result-sets are con-
sequently quite precise and the difference in efficiency from precise execution 
is negligible. When k = 1, approximate execution is about 1.5 times faster 
than precise execution for EP = 0.0002. All other methods offer substantially 
greater improvements, roughly speaking several orders of magnitude. Let us 
focus on a value for EP of 0.0005, with k = 1. This value of EP implies that 
the approximate nearest neighbor is on average the fifth actual nearest neighbor. 
The Good Fraction Approximation method offers an improvement in efficiency 
of about sixty, i.e., the approximate search is executed sixty times faster than 
a precise search. In other words, if the precise execution takes one minute, 
then the approximate execution needs just one second. The same can be ob-
served for the Proximity-based Approximation method. For the Small Chance 
Improvement Approximation method, we see an improvement in efficiency of 
about ten times, and for the PAC method with e = A, IE = 50. 

The approximate algorithms, however, perform much faster for lower values 
of accuracy. For example, with EP = 0.003, i.e., the approximate nearest 
neighbor is the thirtieth actual nearest neighbor, the Small Chance Improve-
ment Approximation is thirty times faster. For the same configuration, the Good 
Fraction Approximation, Proximity-based Approximation, and PAC methods 
are about 300 times faster - if precise execution takes five minutes, the approx-
imate execution still takes just one second. 

We observe that the chief reason for the markedly poor performance of the 
Relative Error Approximation method (with respect to the others) is that precise 
nearest neighbors algorithms find good candidates for the result-sets soon on, 
and then spend the remainder of their time mostly in refining the current results. 
Very efficient methods have the property of stopping the search execution early, 
i.e., as soon as the current result-set is good enough. In fact, the Good Fraction 
Approximation, Small Chance Improvement Approximation, and PAC methods 
are based on early termination strategies, which aim at identifying this situation. 
The Proximity-based Approximation method, even if it is defined as a relaxed 
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branching strategy, implicitly behaves like an early termination strategy, as 
explained in the following. 

Our experiments have shown that after a certain number of iterations of the 
approximate nearest neighbors algorithm with the Proximity-based Approxi-
mation strategy, all entries contained in the priority queue PR (see Section 9 of 
Chapter 1 for a description of the approximate nearest neighbors search algo-
rithm) are suddenly discarded and the algorithm terminates. This is the main 
reason for the big improvement in query execution speed. We call the iteration 
in which the remaining entries are discarded the cut-off iteration. We have also 
observed that small values of fc anticipate the occurrence of the cut-off iteration, 
which can be explained as follows: 

— k=1 
— k=3 

k=10 

1,000 

Figure 4.7. Trend of the query radius during the precise nearest neighbors search execution. 

1 The proximity of two ball regions is less than or equal to the probability 
that a randomly chosen point belongs to the smaller of the two regions. 
This probability can be approximated by F{r), where F (see Section 10.1.2 
of Chapter 1) is the overall distance distribution and r is the radius of the 
smaller region. 

2 At each iteration of the nearest neighbors search algorithm, the query radius 
is changed and set to the distance between the query and the current k-th 
nearest neighbor. Let x be the approximation threshold. When the dynamic 
radius r^ of the query region is reduced so that x > F{rq), then all regions 
in the queue PR are pruned (due to Property 1 above), so the cut-off iteration 
occurs and the search algorithm terminates. 

3 At any specific iteration of the nearest neighbors search algorithm, higher 
values of k result in a larger query radius. To illustrate this, consider Fig-
ure 4.7 which relates the current query radius and the number of iteration 
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Steps of the precise nearest neighbors search algorithm, individually for 
k = 1^3, and 10. Observe that query radii for /c = 1 are systematically 
below those for k = 3, and these are systematically below those for k = 10. 
This means lower k methodically results in smaller query regions, which 
is quite obvious. Given a specific approximation threshold x, let fq be the 
maximum radius such that x > F{fq). Figure 4.7 shows that Yq is reached 
faster with small values of k and may never be reached when x is too small 
or when k is too big. Since the cost for a precise similarity search is almost 
independent of fc, IE is higher for lower values of k. 

The previous arguments can also be used to explain the performance improve-
ments observed for approximate nearest neighbors queries vis ä vis range 
queries. In fact, given that the query radius is fixed during execution of the 
range search algorithm, the cut-off iteration either never occurs or is the very 
first iteration. In the latter case, however, even though execution costs are very 
low, the result-set is empty because all regions are discarded. As a conse-
quence, range queries with larger radii are often posed but their evaluation is 
not accelerated that significantly. 

6.3 Global Considerations 
In summary, the approximation methods described afford moderate improve-

ment in efficiency for range queries and substantial improvement for nearest 
neighbors queries. The Good Fraction Approximation method achieves the 
highest performance, but it can only be used for nearest neighbors queries. 
On the other hand, the Proximity-based Approximation method offers nearly 
the same results, with the advantage of also being applicable to range queries. 
Improvement in efficiency of the Small Chance Improvement Approximation 
method may also reach two orders of magnitude, but the technique is always less 
efficient than the two previous competitors. The Relative Error Approximation 
method can hardly be recommended, because its performance improvements 
are only marginal. The (minor) drawback of the Good Fraction Approxima-
tion and the Proximity-based Approximation methods is that they require pre-
computing, storing, and manipulating the distribution and density functions of 
the searched data. However, as discussed in Section 10.1.2 of Chapter 1, this 
overhead is realistic. The Relative Error Approximation and the Small Chance 
Improvement Approximation methods do not need any pre-analysis of datasets 
and do not require any other storage overhead but their performance is worse 
than that of the other two methods. Finally, the PAC method also achieves very 
good performance. However, it is limited to nearest neighbor searches (k = 1) 
only. 



Chapter 5 

PARALLEL AND DISTRIBUTED INDEXES 

Centralized metric indexes achieve a significant speedup (both in terms of 
distance computations and disk-page reads) when compared to a baseline ap-
proach, the sequential scan. However, experience with centralized methods 
(see, e.g.. Section 3 of Chapter 3) reveals a strong correlation between the 
dataset size and search costs. More specifically, costs increase linearly with 
the growth of the dataset, i.e., it is practically twice as expensive to compute a 
similarity query in a dataset of a given size as it would be with a dataset of half 
that size. Thus, the ability of centralized indexes to maintain a reasonable query 
response time when the dataset multiplies in size, its scalability, is limited. 

In this chapter, we present methods which solve this problem by exploiting 
parallel computing power. The idea behind it is easy in principle: As the dataset 
grows in size, more independent computation and storage resources are added 
(CPUs, disks, etc.), keeping the query response time low. 

The basis of parallel and distributed index structures as well as differences 
between the two approaches can be found in Section 1. In Section 2, we present 
a modification of the M-tree structure for a parallel environment, where multiple 
processors and disks are used to accelerate the evaluation of similarity queries. 
A dynamic index structure which exploits a distributed environment to enhance 
similarity search is explained in Section 3. As the experiments in Section 4 
demonstrate, this structure attains practically constant response times even as 
the dataset grows, provided sufficient computational resources are available. 

1. Preliminaries 
The field of architectures and paradigms for parallel and distributed com-

puting environments is quite large due to the numerous research challenges it 
offers for different objectives. In this book, we concentrate on the database 
perspective. We start by describing some basic requirements for parallel and 
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distributed index structures, and also briefly discuss some of the advantages and 
drawbacks of the parallel and distributed paradigms. 

1.1 Parallel Computing 
We use a definition of parallel systems similar to [Leopold, 2001]: A parallel 

system is a device composed of multiple independent processing units and/or 
multiple independent storage places. All the units share dedicated communica-
tion media and data. Accordingly, a parallel computing environment can be a 
multi-processor computer with several disk units. The processors (CPUs) share 
operating memory (RAM) and use a shared internal bus for communicating with 
the disks. 

In order to fully exploit the parallel environment, an index structure should 
have the following properties: 

• shared data - any object from a stored dataset is available to any processor 
at any time. Of course, there are situations, when, for consistency reasons, 
some objects will be locked by a processor and not immediately accessible 
to another. But such a condition should occur only intermittently; 

• multiple operations at the same time - the system can evaluate several inde-
pendent operations on different processors. The number of tasks processed 
in parallel is limited by the number of processing units (CPUs); 

• parallel storage - data can be stored on multiple disks and each disk is 
available to all processors. There is the possibility of moving data from one 
disk to another. 

The first two requirements allow a parallel index structure to process objects 
from a stored dataset using multiple processors at the same time. The third 
property allows data to be efficiently distributed across disks, thus enabling 
parallel access to stored objects while processing queries. 

In order to measure the effectiveness of parallel search implementations, 
[DeWitt and Gray, 1992] define two factors: speedup and scaleup. Specifically, 
given a fixed job run on a small system and a run on a large (big) system, the 
speedup afforded by the larger system is measured as: 

ST 
speedup = — , 

where ST is the Small system elapsed Time, and BT is the Big system elapsed 
Time. Speedup is linear if an n-times bigger (more powerful) system yields 
a speedup of n. Speedup keeps the problem size constant and expands the 
system. 

Scaleup measures the ability to expand both the system and the problem 
size. It is defined as the ability of an n-times larger system to perform an n-
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times larger job in the same elapsed time as the original system for the original 
problem size. The scaleup metric is: 

STSP 
scaleup = - g ^ ^ , 

where STSP is the Small system elapsed Time on Small Problem, and BTBP 
is the Big system elapsed Time on Big Problem. If this scaleup equation eval-
uates to one, scaleup is said to be linear. 

In spite of the fact that parallel processing can accelerate query execution, 
only a fixed amount of resources are available. Thus, processing can only be 
enhanced by a factor that is strictly bounded by the number of added resources. 
The paradigm of distributed processing further extends these possibilities. 

1.2 Distributed Computing 
In distributed environments, computers (network nodes) are connected via 

a high-speed network (such as a corporate local network, the Internet, etc.). 
They share the processing power of their CPUs as well as the storage resources 
of their disks. Objects of distributed organizations are allocated and processed 
over such an infrastructure. In order to solve queries, store new data, or remove 
unneeded objects, network nodes pass requests to other nodes by means of a 
specific navigation or routing mechanism. In the following, we concentrate on 
the two most important paradigms for distributed indexes, those oi Scalable and 
Distributed Data Structures (SDDS) and Peer-to-Peer (P2P) data networks. 

1.2.1 Scalable and Distributed Data Structures 

The paradigm of Scalable and Distributed Data Structures was originally 
proposed by [Litwin et al., 1996] for simple search keys like numbers and 
strings. Data objects are stored in a distributed file on specialized network 
nodes called servers. More servers are employed as the file grows and additional 
storage capacity is required. The file is modified and queried by network nodes 
called clients through insert, delete, and search operations. The number of 
clients is unlimited and any client can request an operation at any time. To 
ensure high effectiveness, the following three properties should be built into 
the system: 

• scalability - data migrate to new network nodes gracefully, and only when 
the network nodes already used are sufficiently loaded; 

• no hotspot - there is no master site that must be accessed for resolving 
addresses of searched objects, e.g., there is no centralized directory; 

• independence - the file access and maintenance primitives, such as the 
search, insertion, or node split, never require atomic updates on multiple 
nodes. 
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There are several practical reasons why the second property should be satis-
fied. In particular, if hotspots such as centralized directories exist, they would 
sooner or later turn into bottlenecks as the files grow. Structures without 
hotspots are also potentially more efficient in terms of the number and the 
distribution of messages sent over the network during the execution of an op-
eration. 

The third property is vital in a distributed environment, because informing 
other nodes may be either inefficient or even impossible in large-scale networks. 
Since they do not support techniques like multicast or broadcast, update opera-
tions cannot efficiently contact multiple servers with only one message. As an 
alternative, they would flood the network with multiple independent messages 
to all the respective nodes, which is certainly undesirable. Moreover, when 
several updates occur simultaneously on different servers, it may be difficult to 
maintain data consistency on individual nodes. 

1.2.2 Peer-to-Peer Data Networks 

Another distributed paradigm has led to the definition of the Peer-to-Peer 
(P2P) data network. In this environment, network nodes are called peers, equal 
in functionality and typically operating as part of a large-scale, potentially 
unreliable, network. Basically, a peer offers some computational resources, 
but can also use resources of the others [Aberer and Hauswirth, 2002]. In 
principle, the P2P network inherits the basic principles of SDDSs with added 
new requirements to overcome the problems of unreliability in the underlying 
network. These can be summarized as follows: 

• peer - every node participating in the structure behaves as both client and 
server, i.e., the node can perform queries and at the same time store a part 
of the processed data file. 

• fault tolerance - the failure of a network node participating in the structure 
is not fatal. All defined operations can still be performed, but the affected 
part of the dataset is inaccessible, 

• redundancy - data components are replicated on multiple nodes to increase 
availability. Search algorithms must respect the possibility of multiple paths 
leading to specific instances. 

Not every P2P structure proposed so far satisfies all these properties. How-
ever, these are the rules that any P2P system should be aware of and which 
ensure maximal scalability and effectiveness of the system. 

2. Processing M-trees with Parallel Resources 
In this section, we describe a parallel version of the M-tree algorithms (see 

Chapter 3 for description of the M-tree) as proposed in [Zezula et al., 1998b]. 
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The main objective of this parallel implementation is to decrease both CPU and 
I/O costs of executing similarity queries. In principle, there are two specific 
problems (restrictions) to be considered. First, we must respect the hierarchical 
dependencies between a parent node and its respective child nodes. Specifi-
cally, the search starts at the root node of the M-tree and continues recursively 
by traversing the relevant child nodes until leaf nodes with possibly qualify-
ing objects are found, or search on a given path is terminated. In any case, 
a node on a given level cannot be accessed unless all its ancestors have al-
ready been processed. Thus, only nodes on the same level can be processed 
in parallel. Second, the use of priority queues for searching represents another 
serial component in the algorithms. For example, in a nearest neighbors search, 
the validity and significance of nodes in different branches of the M-tree can 
change, because paths that seem to qualify at a certain stage of the search may 
be eliminated when more relevant objects are found, possibly in some other 
parts of the M-tree. 

In the following, we outline the principles of CPU and I/O parallel strategies 
for similarity-query execution in M-trees. Then we discuss qualitatively the 
results of known experimental evaluations. 

2.1 CPU Parallelism 
The order in which the M-tree nodes are accessed is determined by the (pri-

ority) queue, which is dynamically built and maintained in course of query 
execution (refer to Chapter 3). For coordination reasons, the queue is exclu-
sively maintained by a dedicated CPU. Thus, the additional processors can only 
be used to accelerate performance while computing distances of objects within 
individual accessed nodes. Specifically, at each step, a node containing m keys 
is selected from the queue and up to m CPUs are used to compute distances 
between the query object and the particular keys. Similarly, multiple CPUs are 
applied to parallel computations of distances in leaf nodes, where data objects 
actually reside. 

2.2 I/O Parallelism 
As we have already anticipated, the order of accessing nodes is determined 

by their position in the priority queue. Thus, the processing strategy is to fetch 
in parallel as many nodes from the queue as possible, and bring them into main 
memory. To this aim, the key approach to achieve good performance resides 
in using an adequate declustering method to distribute nodes among available 
disks. 

The problem of declustering can be seen in choosing a particular disk upon 
which to place a new node, resulting from splitting an overflowing M-tree node. 
The disk should be chosen in such a way that it does not contain many similar 
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objects or object regions. In other words, the nodes are distributed among disks, 
so that the probabiHty of accessing n disks during a search for n nodes is high. 
[Zezula et al., 1998b] have considered two different types of data placement 
strategies which can be briefly characterized as follows. 

Global Allocation Declustering Method 

With the global allocation strategy, the content of nodes is not taken into account, 
but the number of nodes on a disk is practically constant, thus no data skew 
occurs. The global allocation strategy does not consider similarity between 
node objects, but typically depends upon the order in which new nodes are 
created. In particular, the round robin strategy stores the j-th node on the (j 
mod n)-th disk of an n-disk system, while the random strategy decides which 
disk should store the j-th node using a random number generator. 

Proximity-Based Allocation Declustering Method 

This approach, by contrast, does not consider the data load on individual disks, 
but makes use of the proximity of node regions to locally avoid putting similar 
objects on the same disk. Proximity-based strategies allocate nodes respecting 
the proximity of their covering ball regions as described in Section 10.2 of 
Chapter 1. When choosing a destination disk, the sum of proximities between 
the new region and the regions of nodes already stored on the disk is minimized. 

Efficiency Testing 

Experiments by [Zezula et al., 1998b] demonstrate relatively high I/O speedup 
and scaleup, and the effects of the sequential components of the M-tree al-
gorithms seem not to be very restrictive. The approach also seems not to be 
dependent on query type, number of objects retrieved, or type of object used. 

During the experimental evaluation, the authors observed a practically lin-
ear speedup of M-tree CPU costs. The scaleup as investigated by the authors 
remained constant near a value of one when the initial 10,000-object file sup-
ported by five processors was expanded to a file size four times larger (40,000 
objects) executed by four times as many processors, i.e., twenty processors. 

Although the results show significant improvements, they are still limited 
considering the scalability, because the parallelized M-tree cannot dynamically 
increase the number of processors to preserve query response time as the file 
grows in size. The number of processors that can be actively used is also 
bounded by the maximum number of keys in a node. Moreover, the serial 
nature of the priority queue used during the search also implies a possible 
bottleneck. 
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2.3 Object Declustering in M-trees 
A slightly different version of the parallel M-tree is proposed in [Alpkocak 

et al., 2002]. The algorithm does not try to decluster the nodes of the M-tree 
but instead distributes the nodes' objects across multiple disks. The M-tree leaf 
nodes are modified - they contain only addresses of particular objects stored 
on respective disks. The search algorithm proceeds exactly in the same way as 
for the standard M-tree until the leaf node is reached. After that, the object-
declustered storage allows parallel acceleration of retrieval. In particular, the 
technique tries to distribute the objects according to their distance - specifi-
cally, similar objects are stored on different disks. Thus objects accessed by 
a similarity query are maximally distributed, allowing maximal parallelization 
during retrieval. 

The specific declustering algorithm works as follows: After inserting a new 
object ON into the M-tree, but before actually storing the object on a disk, we 
issue a range query R{ONJ d{oN^p)), where p is the pivot of the M-tree leaf 
node where the object is to be logically stored. The evaluation of the query 
gives us objects similar to ON, and, more importantly, the identifications of 
disks on which these objects are stored. The disk with the minimum number 
of retrieved objects is then selected for storing the object ON-

On the basis of the criterion defined by the authors, i.e., the best utilization 
of parallel disks during similarity queries, the proposed declustering technique 
is nearly optimal. The declustering algorithm considers both object proximity 
and data load on disks as the experimental results provided have shown. 

3. Scalable Distributed Similarity Search Structure 
The parallel paradigm has shown that a certain speedup of a centralized index 

is possible. However it has still limited scalability due to the nature of parallel 
computing. Moreover, computers with a large number of processors (tens or 
hundreds) as well as disk arrays with huge storage are far more expensive than 
a network of several common workstations. 

The first distributed index to support similarity search in generic metric 
spaces is based on the idea of the Generalized Hyperplane Tree, designated 
GHT* [Batko et al., 2004]. The structure allows storing datasets from any met-
ric space and has many essential properties of the SDDS and P2P approaches. 
It is scalable, because every peer can perform an autonomous split and dis-
tribute the data over several peers at any time. It has no hotspot, and all peers 
use an addressing schema as precise as possible, while learning from misad-
dressing. Updates are performed locally and splitting never requires sending 
multiple messages to many peers. Finally, every peer can store data and per-
form similarity queries simultaneously. In what follows, we present the main 
characteristics of the GHT* index. 
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3.1 Architecture 
In general, the GHT* exploits the P2P paradigm, i.e., it consists of network 

nodes (peers) that can insert, update and delete objects in the structure, and 
retrieve them using similarity queries. 

In the GHT*, the dataset is distributed among peers participating in the 
network. Every peer holds sets of objects in its storage areas called buckets. A 
bucket is a limited space dedicated to storing objects. It may, for example, be 
a memory segment or a block on a disk. The number of buckets managed by a 
peer depends on its own potentialities - a peer can have multiple buckets, only 
one bucket, or no bucket at all. In the latter case, the peer is unable to hold 
objects, but can still issue similarity queries and insert or update objects. 

Since the GHT* structure is dynamic and new objects can be inserted at any 
time, a bucket on a peer may reach its capacity limit. In this situation, a new 
bucket is created and some objects from the full bucket are moved to it. This 
new bucket may be located on a different peer than the original one. Thus, the 
GHT* structure grows as new data come in. The opposite operation - merging 
two buckets into one - is also possible, and may be used when objects are 
deleted from the GHT*. 

The core of the algorithm lays down a mechanism for locating appropriate 
peers which hold requested objects. The part of the GHT* responsible for this 
navigation is called the Address Search Tree (AST). In order to avoid hotspots 
which may be caused by the existence of a centralized node accessed by every 
request, an instance of the AST structure is present in every peer. Whenever 
a peer wants to access or modify the data in the GHT* structure, it must first 
consult its own AST to get locations, i.e., peers, where the data resides. Then, it 
contacts the peers via network communication to actually process the operation. 

Since we are in a distributed environment, it is practically impossible to 
maintain a precise address for every object in every peer. Thus, the ASTs in 
the peers contain only limited navigation information which may be imprecise. 
The locating step is then repeated on contacted peers until the desired peers 
are reached. It is guaranteed by the algorithm that the destination peers are 
always found. The GHT* also provides a mechanism called image adjustment 
for updating the imprecise parts of the AST automatically. 

In the following, we summarize the foregoing information and provide some 
necessary identifiers which will be employed in the remainder of this chapter: 

• Each peer maintains data objects in a set of buckets. Within a peer, the 
Bucket IDentifier (BID) is used to address a bucket. 

• Every object is stored in exactly one bucket. 

• Each peer participating in the network has a unique Network Node IDentifier 
(NNID). 
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• A structure called an Address Search Tree (AST) is present in every peer. 

• Subtrees of the AST are automatically updated during the evaluation of 
queries using an algorithm called image adjustment. 

• Peers communicate through the message passing paradigm. For consis-
tency reasons, each request message expects a confirmation by a proper 
acknowledgment message. 

3.2 Address Search Tree 
The AST is a binary search tree based on the Generalized Hyperplane Tree 

(GHT) [Uhlmann, 1991], one of the centralized metric space indexing struc-
tures explained in Section 2.2 of Chapter 2. Its inner nodes hold the routing 
information of the GHT, a pair of pivots each. Each leaf node represents a 
pointer to either a bucket (using BID) or a peer (using NNID) holding the data. 
Whenever the data is in a bucket on the local peer, a leaf node is a BID pointer. 
An NNID pointer is used if the data is on a remote peer. An example of the AST 
is depicted in Figure 5.1. The NNID and BID pointers in leaf nodes are denoted 
by BIDi and NNIDi symbols, while pivots of inner nodes are designated as 
Pi. Observe that every inner node has exactly two pivots. In order to recognize 
inconsistencies between ASTs on different peers, every inner node has a serial 
number. It is initially set to one and incremented whenever a particular part of 
the AST is modified. The serial numbers of inner nodes are shown above the 
inner nodes in Figure 5.1. 

<P1, 
/ 

<P3,P4 >^ 
/ \ 

BIDx BID2 

\ 

<P5,P6 >^ 
/ \ 

BID3 NNIDi 

Figure 5.1. An example of an Address Search Tree. 

Figure 5.2 illustrates the instances of AST structure in a network of three 
peers. The dashed arrows indicate the NNID pointers while the solid arrows 
represent the BID pointers. Observe that Peer 1 has no buckets, while the other 
two peers contain objects located only under specific leaves. 

3.3 Storage Management 
As we have already explained, the atomic storage unit of the GHT* is a 

bucket. The number of buckets and their capacity on a peer always have upper 
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Figure 5.2. The GHT* network of three peers. 

bounds, but these can be different for different peers. Since the bucket identifiers 
are only unique within a peer, a bucket in the global context is addressed by 
a pair (NNID, BID). To achieve scalability, the GHT* must be able to split 
buckets and allocate new storage and network resources. As is intuitively clear, 
splitting one bucket into two implies changes in the AST, i.e., the tree must 
grow. The complementary operation, merging two buckets into one, forces the 
AST to shrink. 

3.3.1 Bucket Splitting 
The bucket splitting operation is triggered by the insertion of an object into 

an already-full bucket. The procedure consists of the following three steps: 

• A new bucket is allocated. If the capacity exists on the local peer, the bucket 
is created there. Otherwise, the bucket is allocated either to another peer 
with free capacity, or a new peer is used. 

• A pair of pivots is chosen from objects of the overflowing bucket as detailed 
in Section 3.3.2. 

• Objects from the overflowing bucket closer to the second pivot than to the 
first one are moved to the new bucket. 

Figure 5.3 illustrates splitting one bucket into two. First, two objects are 
selected from the original bucket as pivots pi and p2- Then, the distances 
between the pivots and every object in the original bucket are computed. All 
objects closer to the pivot p2 are moved into a new bucket BID2. A new inner 
node with the two pivots is added into the AST. 
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Figure 5.3. Splitting of a bucket in GHT. 

3.3.2 Choosing Pivots 

A specific choice of pivot mechanism directly impacts the performance of the 
GHT* structure. However, the selection can be a time-consuming operation, 
typically requiring many distance computations. To smooth this process, the 
authors use an incremental pivot selection algorithm which is based on the 
hypothesis that the GHT structure performs better if the distance between pivots 
is great. 

First, the first two objects inserted into an empty bucket become pivot can-
didates. Then, distances to the candidates are computed for every other object 
inserted. If at least one of these distances is greater than the distance between 
the current candidates, the new object replaces one of the candidates, so the dis-
tance between the new pair of candidates is greater. After a sufficient number 
of insertions, the distance between the candidates is large with respect to the 
bucket dataset. However, the technique need not choose the most distant pair 
of objects. When the bucket overflows, the candidates become pivots and the 
split is executed. 

3.4 Insertion of Objects 
Inserting an object o^ starts in a peer by traversing its local AST from 

the root. For every inner node < pi^p2 >» the left branch is followed if 
d{pi^ ON) < d{p2^ ON), otherwise the right branch is followed. Once a leaf 
node has been reached, a BID or NNID pointer is obtained. If it is the BID 
pointer, the inserted object is stored in the local bucket that the BID points to. 
Otherwise, the NNID pointer found is applied to forward the request to the 
peer, where the insertion continues recursively until an AST leaf with the BID 
pointer is reached. 

For an example refer to Figure 5.1 again, where the AST is shown. To 
insert object ON, the peer starts traversing the AST from the root. Assume 
that d(pi, ON) > d{p2^ o^v), so the right branch is taken where distances di = 
d{pbi ON) and ^2 — d{pQ^ ON) are evaluated. Ifdi < ^2 the left branch is taken 
which is a leaf node with BIDs. Therefore, the object ON is stored locally in 
a bucket denoted by BID^. In the opposite situation, i.e., di > d2, the right 
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branch leading to a leaf with NNIDi is traversed. Reaching the leaf with 
NNID, the insertion must be forwarded to the peer denoted by NNIDi and 
the insert operation continues there. 

In order to avoid redundant distance computations when searching the AST 
on the other peer, a path, once-determined, in the original AST is forwarded 
as well. The path is encoded as a bit-string called BPATH, where each node 
is represented by one bit - "0" represents the left branch, " 1 " represents the 
right branch. Every bit in this path is also accompanied by the respective serial 
number of the inner node. This is used to recognize possible out-of-date entries 
and if such entries are found, to update the AST with a more recent version. 
(The mechanism is explained in Section 3.8). 

When a BPATH is received by a peer, it helps to quickly traverse the AST, 
because the distance computations to pivots are not repeated. During this quick 
traversal, the only check is to see if the serial number of the respective inner 
node equals the serial number stored in the BPATH. If not, the search resumes 
with standard AST traversal, and the pivot distances are evaluated until the 
traversal is finished. 

To clarify the concept, see Figure 5.1. A BPATH representing the traversal 
to the leaf node BID^ can be expressed as "1[2], 0[3]". First, the right branch 
from the root (the first bit thus being one) is taken and the serial number of the 
root node is two (denoted by the number in brackets). Then, the left branch with 
serial number three (thus "0[3]" is the next item) is taken. Finally, reaching a 
leaf node, the traversal is finished. 

3,5 Range Search 
Range search for query R{q, r) is processed as follows. By analogy to 

insertion, the evaluation of a range search operation in GHT* also starts by 
traversing the local AST of the peer which issued the query. However, a different 
traversal condition is used in every inner node < pi,p2 >» specifically: 

d{pi,q) -r < d{p2,q) + r, (5.1) 

d{pi,q) + r>d{p2.q)-r, (5.2) 

The right subtree of the inner node is traversed if Condition 5.1 qualifies and 
the left subtree is traversed whenever Condition 5.2 holds. From the equations 
derived from Lemma 1.4 of Chapter 1, it is clear that both conditions may 
qualify for a particular range search. Therefore, multiple paths may qualify 
and finally, multiple leaf nodes may be reached. 

For all qualifying paths having an NNID pointer in their leaves, the query 
request is recursively forwarded (including known BPATH) to identified peers 
until a BID pointer is found in every leaf. If multiple paths point to the same 
peer, only one request with multiple BPATH attachments is sent. The range 
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search condition is evaluated by the peers in every bucket determined by the 
BID pointers, together forming the response as a set of qualifying objects. 

3.6 Nearest Neighbor Search 
In principle, there are two strategies for evaluating kNN queries. The first 

starts with a very large query radius, covering all the data in a given dataset, to 
identify the degree to which specific regions might contain searched neighbors. 
The information is stored in a priority stack (queue) so that the most promising 
regions are accessed first. As suitable objects are found, the search radius is 
reduced and the stack adjusted accordingly. Though this strategy never accesses 
regions which do not intersect the query region bounded by the distance from 
the query object to its fc-th nearest neighbor, processing of regions is strictly 
serial. On a single computer, the approach is optimal [Hjaltason and Samet, 
1995], but it is not convenient for distributed environments aiming at exploiting 
parallelism. The second strategy starts with a zero radius to locate the first 
region to explore and then extends the radius to locate other candidate regions, 
if the result-set is still not complete. The nearest neighbors search in the GHT* 
structure adopts the second approach. 

The algorithm first searches for a bucket which has a high probability of 
containing nearest neighbors. In particular, it seeks a bucket in which the 
query object would be stored using an insert operation. The accessed bucket's 
objects are sorted according to their distances with respect to the query object 
q. Assume there are at least k objects in the bucket, so that the first k objects, 
the objects with the shortest distances to g, are candidates for the result-set. 
However, there may be other objects in different buckets that are closer to the 
query object than some of the candidates. In order to check this, a range search 
is issued with the radius equal to the distance of the fc-th candidate. In this way, 
a set of objects is obtained which always has cardinality greater than or equal 
to k. If all the retrieved objects are sorted and only the first k possessing the 
shortest distances are retained, the exact answer to the query is obtained. 

If less than k objects are found during the search in the first bucket, another 
strategy must be applied because the upper bound on the distance to the fc-th 
nearest neighbor is unknown. The range search operation is once again exe-
cuted, but the radius must be estimated. If enough objects are returned from 
the range query (at least k), the search is complete - the result is again the 
first k objects from the sorted result of the range search. Otherwise, the radius 
must be expanded and the search done again until enough objects are obtained. 
There are two possible strategies for estimating the radius: (1) the optimistic 
strategy, in which the number of distance computations is kept low but multiple 
incremental range searches might be performed in order to retrieve all necessary 
objects, and (2) the pessimistic strategy, which prefers bigger range radii at the 
expense of additional distance computations. 
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Optimistic strategy. The objective is to minimize the costs, i.e., the number of 
buckets accessed and distance computations carried out, using a smalHsh radius, 
at the risk of more iterations being necessary if not enough objects are found. 
In the first iteration, the bounding radius of the candidates is used, i.e., the 
distance to the last candidate, even though there are fewer than k candidates. 
The optimistic strategy hopes that there will be enough objects in the other 
buckets within this radius. Let x be the number of objects returned from the last 
range query. If x > /c, the search is finished, because the result is guaranteed, 
otherwise, the radius is expanded by factor 1 + ^ ^ and the algorithm iterates 
again. The higher the number of missing objects, the more the radius is enlarged. 

Pessimistic strategy. The estimated radius is chosen rather large so that the 
probability of a next iteration is minimized, while risking excessive (though 
parallel) bucket accesses and distance computations. To estimate the radius, the 
distance between pivots of inner nodes is used, because the algorithm presumes 
pivots are very distant. More specifically, the pessimistic strategy traverses the 
AST from the leaf up to the tree root, using the distance between pivots of the 
current node as the range radius. Every iteration climbs up one level in the 
AST until the search terminates or the root is encountered. If there are still not 
enough objects retrieved, the maximum distance of the metric is used and all 
objects in the structure are examined. 

3.7 Deletions and Updates of Objects 
For simplicity reasons, the updates are not handled specifically. Instead, if 

the algorithm needs to update an object, it first deletes the previous instance of 
this object and inserts the new one. 

The deletion of an object o takes place in two phases. First, a search is made 
for a particular peer and a bucket containing the object being deleted. The insert 
traversal algorithm is used for this. More specifically, the algorithm searches 
for the leaf node in the AST containing the BID pointer b, where object o would 
be inserted. 

The bucket h is sought to determine whether the object is really there. If 
not, the algorithm finishes, because the object is not present in the structure. 
Otherwise, the object is removed from the bucket h. 

At this point, an object has been removed from the structure. However, if 
many objects are removed from buckets, the overall load of the GHT* structure 
would degrade. Many nearly-empty buckets would also worsen efficiency at the 
whole-system level. Therefore, an algorithm is provided to merge two buckets 
into one in order to increase the load factor of the bucket. 

First, the algorithm must detect (after a deletion) that the bucket has become 
underfilled and needs to be merged. This can be easily implemented by, e.g., 
a minimal-load threshold for a bucket. Let AT̂  be the leaf node representing 
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Figure 5.4. Removing a bucket pointer from the AST. 

the pointer to the underfilled bucket b. A bucket to merge with the underfilled 
bucket must be found. The algorithm, as a rule, always merges the right bucket 
with the left one, because after a split the original bucket stays in the left and 
the new one goes to the right. 

Let Np be the parent inner node of the node Ni^. If the node Â^ is a right 
sub-node of the node Np, then the algorithm reinserts all the objects from the 
underfilled bucket to the left subtree of node Np and removes node Np from the 
AST, shrinking the path from the root. Similarly, if Â5 is a left sub-node, all 
the objects from the right branch are taken and reinserted into the left branch, 
and Np is removed from the AST. Possible bucket overflows are handled as 
usual. To allow other peers to detect changes in the AST, the serial numbers of 
all inner nodes in the subtree with root Np are incremented by one. 

Figure 5.4 outlines the concept. We are removing the bucket BID3, so first 
we reinsert the data to the left subtree of its parent (the shaded node). For every 
object in BID^ we decide according to pivots in the left subtree (specifically, 
the hatch-marked node) whether to go to bucket BIDi or bucket BID2. Then 
we remove the leaf node with BIDs and, preserving the binary tree, we also 
remove the parent node. One can also see that the serial numbers of the affected 
nodes are incremented. 

3.8 Image Adjustment 
An important advantage of the GHT* structure is update independence. Dur-

ing object insertion, a peer can split an overflowing bucket without informing 
other nodes in the network. Similarly, deletions may merge buckets. Conse-
quently, peers need not have their ASTs up-to-date with respect to the data, 
but the advantage is that the network is not flooded with many "adjustment" 
messages for every update. AST updates are thus postponed and actually done 
when the respective insertion, deletion, or search operations are executed. 

The inconsistency in the ASTs is recognized on a peer that receives an op-
eration request with corresponding BPATH from another peer. In fact, if the 



176 SIMILARITY SEARCH 

BPATH derived from the AST of the current peer is longer than the received 
BPATH, this indicates that the sending peer has an out-of-date version of the 
AST and must be updated. The other possibility is inconsistency between serial 
numbers in the BPATH and the inner nodes of the AST. The current peer easily 
determines a subtree that is missing or outdated on the sending peer because 
the root of this subtree is the last correct element of the received BPATH. Such 
a subtree is sent back to the peer through an Image Adjustment Message, lAM. 

If multiple BPATHs are received by the current peer (which can occur in case 
of range queries) several subtrees can be sent back through one I AM (including 
all found inconsistencies). Naturally, the lAM process can also involve multiple 
peers. Whenever a peer finds an NNID in its AST leaf during the path expansion, 
the request must be forwarded to the located peer. This peer can also detect 
an inconsistency and respond with an lAM. This image adjustment message 
updates the ASTs of all previous peers, including the first peer starting the 
operation. This is a recursive procedure which guarantees that, for an insertion, 
deletion or a search operation, every involved peer is correctly updated. 

Peer 
NNIDj 

' ^ v ^ c 

Request 

jply and I AM 

Reply^ 

Peer 
NNID2 

Reply 

Forward 

Forwa 

s ^ R e p l 

vsR)rward 

Peer 
NNID 3 

rd ^ V 
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NNID4 \ 

^ ^ ^ 

1 Peer 
] NNID^ 

Figure 5.5. Message passing during a query and image adjustments. 

An example of a communication during a query execution is given by Fig-
ure 5.5. At the beginning, the peer with NNIDi starts to evaluate a query. 
According to its local AST the query must be forwarded to peer NNID2. 
However, this peer detects that the BPATHs from the forwarded request are not 
complete - i.e., using local AST of peer NNID2 the BPATHs are extended 
and new leaf nodes with NNIDs, NNID4, and NNID^ are reached. There-
fore, the request is forwarded to those peers and processed there. The peers 
were contacted by NNID2, so they respond with the query results back to 
peer NNID2. Finally, peer NNID2 passes the responses to peer NNIDi as 
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the final result-set along with image adjustment, which is represented by the 
respective subtrees of the local AST of the peer NNID2' 

3,9 Logarithmic Replication Strategy 
As explained previously, every inner node of the AST contains two pivots 

and the AST structure is present in a more or less accurate form on every 
peer. Therefore, the number of replicated pivots increases linearly with the 
number of peers used. In order to reduce replication, the authors propose a 
more economical strategy which achieves logarithmic replication among peers 
at the cost of a moderately increased number of forwarded requests. 

Peerl Peerl 

Peer: 

Logarithmic AST 

Figure 5.6. Example of the logarithmic AST. 

Inspired by the lazy updates strategy by [Johnson and Krishna, 1993], the 
logarithmic replication scheme uses a slightly modified AST containing only 
the necessary number of inner nodes. More precisely, the AST on a specific 
peer stores only those nodes containing pointers to local buckets (i.e., leaf nodes 
with BID pointers) and all their ancestors. However, the resulting AST is still 
a binary tree which substitutes all subtrees leading exclusively to leaf nodes 
with NNID pointers by the leftmost leaf node of the subtree. The rationale for 
choosing the leftmost leaf node derives from the split strategy, which always 
retains the left node and adds the right one. Figure 5.6 illustrates this principle. 
In a way, the logarithmic AST can be seen as the minimum subtree of the fully 
updated AST. The search operation with the logarithmic replication scheme 
may require more forwarding (compared to the full replication scheme), but 
replication is significantly reduced. 
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3.10 Joining the Peer-to-Peer Network 
The GHT* scales-up to process a large volume of data by utilizing more and 

more peers. In principle, such an extension can be solved in several ways. In the 
GRID infrastructure, for example, new peers are added by standard commands. 
In the prototype implementation, authors use a pool of available peers known 
to every active peer. They do not use a centralized registering service. Instead, 
they exploit broadcast messaging to notify active peers about a new peer that has 
become available. When a new network node becomes available, the following 
actions occur: 

• The new node with its NNID sends a broadcast message saying "I am here". 
This message is received by each active peer in the network. 

• The receiving peers add the announced NNID to their local pool of available 
peers. 

Additional storage and computational resources required by an active peer are 
extended as follows: 

• The active peer picks up one item from the pool of available peers. An 
activation message is sent to the chosen peer. 

• With another broadcast message, the chosen peer announces: "I am being 
used now" so that other active peers can remove its NNID from their pools 
of available peers. 

• The chosen peer initializes its own pool of available peers, creates a copy 
of the AST, and sends the caller the "Ready to serve" reply message. 

The algorithm is illustrated in Figure 5.7, where the numbers represent the 
messages sent in the order they appear. The white computer is a new peer 
that has just joined the network. It announces its presence by an "I am here" 
message (1) delivered to all other active peers. Then an active overloaded peer 
(at top left) needs a new peer. It contacts the white peer in order to activate 
it (2). The white peer broadcasts "I am being used now" to all others (3) and 
responds with "Ready to serve" to the first peer (4). 

If a peer does not want to be activated, it might respond to the first message 
immediately saying that it is not available any more. The requesting peer then 
removes it from its pool and continues with the next one. 

3.11 Leaving the Peer-to-Peer Network 
As stated in Section 1.2.2, peers may want to leave the network. The proposed 

technique does not deal with the unexpected exit of peers which may occur due 
to the unreliability in the network, operating system crashes among peers, etc. 
To recover from such situations, replication and fault tolerance mechanisms are 



Parallel and distributed indexes 179 

Figure 5.7. New peer allocation using broadcast messages. 

required to preserve data even if part of the system goes down unexpectedly. 
However, this is stated by the authors of the GHT* to be a future research 
challenge and has not yet been addressed. Therefore, if a peer wants to leave 
the network, it must perform a clean-up first. 

There are two kinds of peers - peers which store some data in their local 
buckets and peers which do not. Those which do not provide use of their 
storage may leave the system safely without causing problems and need not 
inform the others. However, peers which hold data must first ensure that data is 
not lost. In general, such a peer uses the deletion mechanism and reinserts the 
data again, but without offering its storage capacity to the network any longer. 
The peer thus gets rid of all its objects and does not receive new ones. 

4. Performance Trials 
In this section, we report on our experience with the distributed index GHT* 

using the prototype implementation provided by its authors. This section further 
expands upon Section 3 of Chapter 3, where we have provided some experimen-
tal results for centralized disk-based structures. To obtain experimental results 
comparable to those of centralized structures, we have used the same datasets 
and provide total costs incurred by similarity queries in GHT* in Section 4.2.1. 
In Section 4.2.2, we show the enhancement of distributed computing, i.e., the 
parallel costs, which represent the actual response time of the search system. 
In both sections, we show results of range and nearest neighbors queries, which 
are then compared with each other in Section 4.2.3. 

The final group of experiments concentrates on the scalability aspects of 
the GHT*. The point we would most like to emphasize in this section is that, 
even with a huge and permanently growing dataset, the index distributed on 
sufficient number of peers is able to maintain practically constant response 
times to similarity queries. 
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4.1 Datasets and Computing Infrastructure 
We conducted our experiments using two real-life datasets. The first was a 

dataset of 45-dimensional vectors of color image features (labeled VEC) com-
pared via the quadratic form distance function. The second dataset consisted of 
sentences from the Czech language corpus (labeled STR), with the edit distance 
function used to quantify sentence proximity. Both datasets contained 100,000 
objects, vectors or sentences, respectively. Further details about these datasets 
can be found in Section 3 of Chapter 3. 

We used a local network of 100 workstations, which are publicly available for 
students. The computers are connected by a high-speed 100Mbit switched net-
work with access times approximately 5ms. Since the computers have enough 
memory, we used the simplest setting of the GHT* implementation, in which 
the buckets are implemented as unordered lists of objects stored in RAM. How-
ever, more advanced settings are possible, such as organizing the buckets by 
a centralized index, for example the M-tree or D-index, storing data on disks. 
Such Schemas would additionally extend the efficiency of the distributed index, 
but would also further complicate the evaluation of results and the comparison 
with centralized indexes. 

To achieve deterministic and reliable experimental results, we used the log-
arithmic replication schema for all participating peers. We also used a constant 
number of buckets per peer and the same capacity for all buckets. Specifically, 
every peer was capable of holding up to five buckets with a maximum 1,000 
objects per bucket. 

The computers were not exclusively dedicated to our performance trials. In 
such an environment, it is practically impossible to maintain identical behavior 
for each participating computer, and the speed and actual response times of the 
computers may vary depending on their actual computational load. Therefore 
we do not report absolute response times but rather the number of distance 
computations to characterize CPU costs, the number of buckets accessed for 
I/O costs, and the number of messages sent to indicate network communication 
costs. 

4.2 Performance of Similarity Queries 
In order to study the performance of the GHT* for changing queries, we have 

measured the costs of range and nearest neighbors queries for different sizes 
of query radii and different numbers of neighbors, respectively. All inputs for 
graphs in this section were obtained by averaging the results of fifty queries 
with a different set of (randomly chosen) query objects and constant search 
radius or number of neighbors, respectively. 
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4.2.1 Global Costs 
A distributed structure uses the power of networked computers to speed up 

query evaluation by parallel execution. However, every participating peer must 
employ its resources and that naturally incurs some costs. In this section, we 
provide the total costs needed to evaluate a query, i.e., the sum of costs for each 
peer employed during the query execution. 

In general, total costs are directly comparable to those of centralized indexes, 
because these represent the costs the distributed structure would need if run on a 
single computer. Of course, there are some additional costs due to the distributed 
nature of the algorithms. In particular, a centralized structure incurs no network 
communication costs. 

Buckets Accessed (I/O costs). The first experiment focused on relationships 
between query size and total number of buckets and peers accessed. For dif-
ferent radii of range queries. Figure 5.8 reports these results separately for the 
VEC and STR datasets together with the number of retrieved objects (divided 
by 100 for easier exposition). If the radius increases, the number of peers ac-
cessed grows practically linearly, the number of accessed buckets a bit faster. 
However, the number of retrieved objects satisfying the query, i.e., the result-
set size, may grow exponentially. In general, this is in accordance with the I/O 
behavior of centralized metric indexes such as the M-tree or the D-index on the 
global (not distributed) scale. 
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Figure 5.8. Average number of buckets, peers, and objects retrieved as a function of radius. 

We have also measured these characteristics for kNN queries, and the results 
are shown in Figure 5.9. We again report the number of buckets and peers 
accessed with respect to the increasing value of fc. As should be clear, the value 
k also represents the number of objects retrieved. These trials once again reveal 
a behavior similar to centralized indexes - total costs are low for small values 
of /c, but grow very rapidly as the number of neighbors increases. 
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Figure 5.9. Average number of buckets, peers, and objects retrieved as a function of k. 

Distance Computations (CPU costs). In the following experiments, we have 
concentrated on the total cost of the similarity queries measured by the num-
ber of distance computations. Specifically, Figure 5.10 shows the results for 
increasing radii of range queries. The total cost is the sum of all distance compu-
tations performed by every accessed peer in accessed buckets plus "navigation" 
costs. The navigation cost is measured in terms of distance computations in the 
AST (shown as a separate line). Since these costs are well below 1%, they can 
be neglected for practical purposes. Observe that total costs have once again 
been divided by 100. 
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Figure 5.10. Total and AST distance computations as a function of radius. 

In Figure 5.11, we show total distance computation costs of kNN queries for 
different values of k. The results were obtained similarly as for range queries, 
and for convenience we provide the AST computations as well. It can be seen 
that, even for the computationally more expensive nearest neighbors queries, 
AST navigation costs are only marginal and can be neglected. 
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Figure 5.11. Total and AST distance computations as a function of k. 

Compared to centralized indexes, the GHT* performs better than the sequen-
tial scan, but the M-tree and D-index achieve better results. However, the GHT* 
can perform distance computations in parallel, which is the main advantage of 
the distributed index. We elaborate on this issue in the next section. 

Messages Sent (communication cost). Algorithms for the evaluation of simi-
larity queries in GHT* send messages whenever they need to access other peers. 
More specifically, if an NNID pointer for the peer is encountered in a leaf node 
during evaluation, a message is sent to that peer. These are termed request 
messages. Messages destined for the same peer are sent together within one 
message. Figures 5.12 and 5.13 depict the total number of request messages 
sent by peers involved in a range and kNN search, respectively. We have also 
measured the number of messages that had to be forwarded because of improper 
addressing. This situation occurs when a request message arrives at a peer that 
does not evaluate the query in its local buckets and only passes (forwards) the 
message to a more appropriate peer. This cost is a little higher for the kNN 
algorithm because its first phase needs to navigate to the proper bucket first. 

Intuitively, the total number of (request) messages is strictly related to the 
number of peers accessed. This fact is confirmed by trials using both range and 
nearest neighbors queries. We have also observed that, even with the logarithmic 
replication strategy, the average number of messages forwarded is below 15% 
of the total number of messages sent during query execution. The process of 
sending messages is specific to a distributed environment and therefore has no 
adequate counterpart in centralized structures. 

4.2.2 Parallel Costs 

The objective of this section is to report results using the distributed structure 
GHT*, with an emphasis on parallel costs. As opposed to the total costs, these 
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Figure 5.12. Average number of request and forward messages as a function of the radius. 
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Figure 5.13. Average number of request and forward messages as a function of the k. 

correspond to the actual response time of the GHT* index structure to execute 
similarity queries. 

For our purposes, we define the parallel cost as the maximum of the serial 
costs from all accessed peers. For example, to measure a parallel distance 
computations cost during a range query, we gather the number of distance com-
putations on each peer accessed during the query. The maximum of those values 
is the query's parallel cost, since the range query evaluation has practically no 
serial component (except for the search in the AST on the first peer, which is 
very low-cost and so can be neglected). 

A different situation occurs during the execution of kNN queries, because 
the kNN search algorithm consists of two phases, which cannot be performed 
simultaneously. The parallel cost is therefore the sum of the parallel costs of 
the respective phases. As explained in Section 3.6, the first phase navigates to 
a single bucket seeking candidates for neighbors. The second phase consists of 
a range query, for which we have already defined the parallel cost. However, 
the second phase can be repeated when the number of objects retrieved is still 
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smaller than k. Finally, the parallel cost of a nearest neighbors query is the 
sum of the cost of the first phase plus the parallel costs of every needed second 
phase. 

Buckets Accessed (I/O costs). The parallel costs for range queries, measured 
as the maximal number of accessed buckets per peer, are summarized in Fig-
ure 5.14. Since the number of buckets per peer is bounded - our trials employed 
maximally five buckets per peer - the parallel cost remains stable at around 4.3 
buckets per peer. For this reason, the parallel range query cost scales well with 
increasing query radius. 
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Figure 5.14. Parallel cost in accessed buckets as a function of radius. 

A nearest neighbors query always requires one bucket access for the first 
phase. Then multiple second phases may be required and their costs are added 
to the resulting parallel cost. Figure 5.15 shows these results, with the number 
of iterations in the second phase of the algorithm represented by the lower curve. 
It can be seen that, for smaller values of k, only one iteration is needed and the 
cost is somewhere around the value 5.4, consisting of 1.0 for the initial bucket 
and 4.4 for the range query. As the value of k grows above the number of objects 
in one bucket, more iterations are needed. Obviously, each additional iteration 
represents a serial step of query execution, so the cost slightly increases, but the 
increase is not doubled, because the algorithm never accesses buckets which 
have already been processed. In any case, the number of iterations is not high 
and in our experiments maximally two iterations were always sufficient. 

Distance Computations (CPU costs). Parallel distance computations repre-
sented the major query execution cost in our trials, and can be considered an 
accurate approximation to actual query response time. This is mainly thanks 
to the fact that the time to access buckets and send messages is practically neg-
ligible compared to the evaluation of used distance metric functions. Recall 
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Figure 5.15. Parallel cost in accessed buckets with the number of iterations as a function of k. 

that the computations of edit distance and quadratic form metric functions are 
very time demanding - accessing a bucket in local memory costs microseconds, 
while network communications can be achieved in tens of milliseconds. 

We have applied a standard methodology: We have measured the number of 
distance computations evaluated by each peer, and taken as the reported cost 
the maximum of these values. Figure 5.16 shows results averaged for the same 
set of fifty randomly chosen query objects and a specific radius. Since the 
number of objects stored per peer is bounded (maximum five buckets per peer 
and 1,000 objects per bucket), the cost would never exceed this value. Recall 
that we do not consider AST costs, which are of no practical significance. Thus 
the structure retains an essentially constant response time for any size of query 
radius. 
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Figure 5.16. Parallel cost in distance computations as a function of radius. 

The situation is similar for kNN queries but the sequential components of 
the search algorithm must be properly considered. The results are shown in 
Figure 5.17 and represent the parallel costs for different numbers of neighbors 
/c, measured in terms of distance computations. It can be seen that costs grow 
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very quickly to a value of around 5,000 distance computations. This value 
represents the parallel cost of the range query plus the initial search for the first 
bucket. Some increase in distance computations with k around 800 can also be 
seen. This is caused by the added sequential phase of the algorithm, i.e., the 
next iteration. The increase is not dramatic, since only some additional buckets 
are searched to amend the result-set to k objects. This is in accordance with 
the buckets accessed in parallel shown in Figure 5.14. It can be seen there that 
only one additional "parallel" bucket was searched during the second iteration, 
thus the increase in parallel distance computations may be maximally 1,000 
(the capacity of a bucket). 
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Figure 5.17. Parallel cost in distance computations as a function of k. 

Messages Sent (communication cost). Parallel communication cost is a bit 
different from previous cases, since we cannot compute it "per peer". During 
the evaluation of a query, every peer can send messages to several other peers, 
but we can consider the cost of sending several messages to different peers equal 
to the cost of sending only one message to a specific peer, since a peer sends 
them all at once. Thus, the parallel communication cost consists of a chain 
of forwarded messages, the sequential passing of the request to other peers. 
The number of peers sequentially contacted during a search, is usually called 
the hop count. In the GHT* algorithm, there can be several different "hop" 
paths. For our purposes, we have taken the longest hop path, i.e., the path with 
maximal hop count, as the parallel communication cost. 

Figures 5.18 and 5.19 present the number of hops during a range and kNN 
search, respectively. Our experimental trials show parallel communication is 
essentially logarithmically proportional to the number of peers accessed (see 
Figure 5.8), a desirable property in any distributed structure. The time spent 
communicating can also be deduced from these graphs. However, it is hard to 
see the contribution of this cost to the overall response time of a query, since 
each peer first traverses its AST and forwards messages to the respective peers 
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(if needed), and only then it begins to compute distances inside its buckets. So 
the communication time is only added to the time spent computing the distances 
in peers contacted subsequently, but these can have only a few objects in their 
buckets. In this case, the overall response time is practically unaffected by 
communication costs. 
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Figure 5.18. Number of parallel messages as a function of radius. 
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Figure 5.19. Number of parallel messages as a function of k. 

4.2.3 Comparison of Search Algorithms 
In principle, the nearest neighbors search can be solved by a range query, 

provided a specific radius is known. After a kNN query has been solved, 
it becomes trivial to execute the corresponding range query with a precisely 
measured radius, i.e., using the distance from the query object to the /c-th re-
trieved object. However, such radius is generally unknown, so kNN queries 
are typically more expensive. We have compared the costs in terms of distance 
computations of the original nearest neighbors query execution with the costs 
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of the respective range query with exact radius. In what follows, we provide 
both the parallel and total costs measured according to the methodology used 
throughout this section. 
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Figure 5.20. Comparison of a kNN and range query returning k objects as a function of k. 

The trials show kNN query execution costs are always slightly higher than 
those of a comparable range query execution. In particular, total costs are 
practically equal to those of the range query, mainly because the kNN algorithm 
never accesses the same bucket twice. The difference is caused by the fact that 
the estimated radius need not be optimal. A different situation can be observed 
for parallel costs, since the kNN search needs some sequential execution steps, 
thus diminishing the possibility for parallel execution. In Figure 5.20, the effects 
of accessing the first bucket during the first phase of the kNN algorithm can 
be clearly seen in the difference between the range and kNN parallel cost lines 
in the graphs. The costs of the second iteration become visible after k > 800, 
which further worsens the parallel response time of the nearest neighbors query. 
However, the parallel response time is still comparable to that of the range query. 
It is practically stable and does not grow markedly. 

4.3 Data Volume Scalability 
In this section, we detail our tests of scalability of the GHT*, i.e., the ability 

to adapt to expanding datasets. To measure this experimentally, we have fixed 
the query parameters by choosing two distinct query radii and three different 
values for nearest neighbors k. The same set of fifty randomly chosen query 
objects was employed during the experiment, with the graphs depicting average 
values. Moreover, we have gradually expanded the original dataset to 1,000,000 
objects. The following results were obtained as measures at particular stages 
of incremental insertion. More specifically, we have measured intraquery and 
interquery parallelism costs after every block of 2,000 inserted objects. 

We quantify the intraquery parallelism cost as the parallel response of a query 
measured in terms of distance computations. This is defined to be the maximum 
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of costs incurred on peers involved in the query, including navigation costs in 
the AST. Specifically, each accessed peer computes its internal cost as the sum 
of the computations in its local AST, and the computations in its buckets visited 
during the evaluation. The intraquery cost is then determined as the maximum 
of the internal costs of all peers accessed during the evaluation. 

Interquery parallelism is more difficult to quantify. To simplify it, we char-
acterize the interquery parallelism as the ratio of the number of peers involved 
in a query to the total number of peers. In this way, we assume that the lower 
the ratio, the higher the chances for other queries to be executed in parallel. 
Naturally, such an assumption is valid only if each peer is used with equal 
probability. In summary, the intraquery parallelism is proportional to the re-
sponse time of a query, while the interquery parallelism represents the relative 
utilization of available computing resources. 
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Figure 5.21. Parallel cost as a function of dataset size for two different radii. 

The results summarized in Figure 5.21 show intraquery parallelism remains 
very stable, independently of dataset size. Thus the parallel search time, which 
is proportional to this cost, remains practically constant, which is to be expected 
from the fact that storage and computing resources are added gradually as the 
size of the dataset grows. Of course, the number of distance computations 
needed for traversing the AST grows with the size of the dataset. However, this 
contribution is not visible. The reason is that AST growth is logarithmic, while 
peer expansion is linear. 

The nearest neighbors results shown in Figure 5.22 exhibit similar behavior, 
only the absolute cost is a bit higher. This is incurred by the sequential steps of 
the nearest neighbors search algorithm, consisting of locating the first bucket, 
followed by possibly multiple sequential iterations. However, the cost is still 
nearly constant, thus the query response remains unchanged even if the file 
grows in size. 

By contrast, the ratio shown in Figure 5.23 characterizing interquery paral-
lelism actually decreases as the dataset grows in size. This means the number 
of peers involved during the query grows much more slowly than the number of 
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Figure 5.22. Parallel cost as a function of dataset size for three different k. 
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Figure 5.23. Percentage of peers used as a function of dataset size for two different radii. 

active peers, and thus the percentage of peers used to evaluate the query drops. 
For example, with 1,000,000 objects inserted in the structure, only 21% of all 
active peers were accessed in order to satisfy the query with the smaller radius. 
This also means that, assuming an equal distribution of accessed peers, there 
can be almost five totally independent queries solved on peers at the same time. 
In other words, compared to the centralized solution, nearly five independent 
queries are solved simultaneously with a response time identical to one such 
query. Of course, this situation represents the ideal. But assuming a heavily 
loaded system (one with a huge amount of queries executed), the response of a 
particular query will not degrade as much as for a centralized structure, which 
executes queries in a strictly serial way. 



Concluding Summary 

There is no doubt that the proliferation of new data types will lead to dramatic 
change or the significant extension of a fundamental data processing paradigm, 
that of search. It seems certain that the binary "YES" or "NO" classification for 
retrieved versus undesired data will be replaced by an approximate assessment 
of relevance. This naturally implies a sort of ranking with respect to a user-
defined reference, model, or other idealized specification of the data desired. 
Though other possibilities are expected in the future, such a search paradigm is 
typically fulfilled by similarity search. 

Traditionally, search has been applied to structured (attribute-type) data 
yielding records that exactly match the query. A more modem type of search, 
similarity search, is used in content-based retrieval for queries involving com-
plex data types such as images, videos, time series, text documents and DNA se-
quences. Similarity search is based on approximate rather than exact relevance 
using a distance metric that, together with the database, forms a mathematical 
metric space. The obvious advantage of similarity search is that the results 
can be ranked according to their estimated relevance. But currently prevalent 
centralized similarity search mechanisms are time-consuming and not scalable, 
thus only suitable for relatively small data collections. 

Google-like Web search engines are based on specialized search mechanisms 
for text documents and for HTML pages. Since less than 1% of Web data is in 
text form, the rest being of a multimedia/streaming nature, the next-generation 
of search needs to be expanded to accommodate these heterogeneous data types, 
also taking into account datastreams produced by data sensors, the mobility of 
data resources, as well as the variety of formats in which data may appear. It 
is believed that the diversity and uncertainty of terminologies and schema-like 
annotations will make precise querying on a Web scale elusive if not hopeless, 
and that the same argument holds for large-scale networks of intra- and inter-
organizational data sources. As a consequence, traditional query processing 
and search technology need to be supported by a powerful distributed comput-
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ing platform that will empower the next-generation relevance-ranked similarity 
search methods. 

It is estimated that 93% of data produced today is in digital format, and the 
amount of data added each year is more than an exabyte (i.e. 10^^ bytes). This 
is due in part to people and organizations collecting more data, e.g., digital 
photographs, and making the data more accessible. It is also caused by new 
technologies like peer-to-peer networks offering and exchanging huge volumes 
of (mostly) multimedia data which already make up the majority of network 
traffic on the Internet. The problem is visible not only on the World Wide Web, 
but also in large data-producing organizations. The trend is toward a small and 
shrinking subset of corporate information managed in database management 
systems (10 to 15% today), with more and more relevant information existing 
outside corporate databases. This trend is inevitable, due to the decentralization 
and personalization of control and data. Examples include: office documents, 
legal papers, technical references, regulations, marketing material, customer 
relationship information, scientific and statistical data collections, biological 
data, streams of volatile data from sensor networks, news tickers, video tapes, 
telephone recordings, e-mail etc. An effective search solution to cope with 
this exponential growth and diversity of data sources must consider two related 
issues: 

effectiveness - formulating (dis)similarity or proximity paradigms, and 

efficiency - achieving the required performance over huge volumes of data. 

The effectiveness of next-generation search requires new query techniques that 
deal with inexact matching and heterogeneous data forms. The efficiency of 
search requires innovative ideas about how to arrange and adjust computation 
power, storage, and network resources to meet the requirements set by the 
queries in a given context. 

In this book, we have summarized the latest efforts in similarity searching us-
ing metric space as a suitable theoretical abstraction. We have demonstrated the 
extensibility of this approach by examples of various distance measures, which 
can be defined for virtually any application. We have specified theoretical con-
straints that can be applied for partitioning metric data into subsets, with the aim 
of achieving efficient pruning during similarity query execution. Partitioning 
principles lead to the formation of hierarchical (e.g. tree-like) index structures. 
Building on such a hypothetical structure, we have explained related theoretical 
research achievements to support efficient query processing, performance pre-
diction, and similarity search application through the transformation of metric 
measures. Many similarity search index structures have been reported in an 
extensive survey including corresponding search algorithms. Whenever possi-
ble, specific ideas have been contrasted with theoretical essentials. In greater 
detail, we have described disk-oriented search structures, demonstrated how the 
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notion of approximation can significantly speed up retrieval, and reported on 
the latest parallel and distributed efforts to cope with the problem of scalability. 

In the future, finding a scalable solution to the search problem for large-
scale distributed heterogeneous data will constitute an important scientific and 
technological breakthrough, overcoming the scalability limitations of present 
solutions and today's research perspectives. It will have a big economic im-
pact, since it can generate technology for the next generation of integrated and 
multipurpose search and query processing engines on the scale of the Web as 
well as for intranet-scale information management infrastructures. 

Searching for the most relevant data is essential, not only for personal use, but 
also for applications like e-science, e-business, e-health, catastrophe manage-
ment, and many others. These new application domains require the relevance of 
specific searches to be determined autonomously to avoid information overload 
with false results. Furthermore, these application domains require new search 
strategies for automatically searching multimedia data. Traditional centralized 
search structures, as employed by today's search machines, will require radical 
redesign and re-engineering to address these issues. 

The biggest challenge for the search paradigm is to find self-organizing so-
lutions that evolve over time and still scale into the expected data volume quan-
tities. Such an initiative must be based on solid theoretical grounds to avoid 
a quick but ad hoc solutions; these will sooner or later fail because their def-
initions lack rigor, and because their behavior is unpredictable. The research 
should certainly go beyond the capabilities of the traditional computer science. 
It should try to find inspiration in other areas, such as the social sciences, biol-
ogy, or mathematical theories of epidemic diseases. 

Future pervasive computing and communication systems represent a big 
challenge for the new kinds of searching. But at the same time, they offer a 
great opportunity to find a successful solution. With the massive deployment of 
computational resources, we need solutions which will fully exploit available 
computational power, which very often lies idle or partly utilized. Such an 
environment nevertheless not only provides a framework for scalability, it also 
offers a possibility for performance tuning and customization for communities 
of users. 

In order to successfully replace or enhance still-predominant exact-match 
search mechanisms, future solutions should be general-purpose and highly ex-
tensible. Only in this way will they be able to serve the vast collective of 
potential users from different applications. Though a strong emphasis should 
be placed upon theories and formal definitions, all hypotheses must be diligently 
verified by extensive trials on the road to becoming candidates for successful 
products. 
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